一种基于深度学习的工业控制流量协议识别方法

    公开(公告)号:CN114884695A

    公开(公告)日:2022-08-09

    申请号:CN202210366791.4

    申请日:2022-04-08

    摘要: 一种基于深度学习的工业控制流量协议识别方法,涉及一种提高工业控制模型运行方法,本发明将其划分为训练数据集和做测试数据集;通过数据加强将训练数据集调整数据的不平衡性,将处理过后的数据作为下一层的输入;使用最大似然估计计算最优标注序列,通过训练得到最高条件概率对输入数据进行标记;使用MLP作为协议识别的分类器,效果不理想可以优化权重参数,继续学习直到模型最优化,将此模块与真实工控环境结合达到实时监测的效果。本发明绕过了私有协议的预特征处理以及人工提取特征值,避免不必要的困难与损失;实现对工业控制系统协议的实时自动有效解析识别,达到流量监测与分类,避免恶意流量攻击工业系统,保障工业控制系统的安全,提高工业环境的工作效率。