融合自学习语义特征与设计特征的遥感影像目标提取方法

    公开(公告)号:CN110544260A

    公开(公告)日:2019-12-06

    申请号:CN201910777761.0

    申请日:2019-08-22

    申请人: 河海大学

    IPC分类号: G06T7/136 G06T5/00 G06T7/181

    摘要: 本发明公开了一种融合自学习语义特征与设计特征的遥感影像目标提取方法,包括如下步骤:使用人工设计的边缘算子对遥感影像提取内部边缘点,依据边缘点完成图像初始分割并标记分割对象;通过改进的Mask R-CNN模型学习并提取建筑物语义特征,根据自学习语义特征提取建筑物掩膜图像;融合基于边缘算子的遥感影像分割图与掩膜图像获得最终建筑物提取图。本发明从建筑物的自学习语义特征与人工设计特征两个角度出发,完成建筑物提取。模型既可以通过自学习语义特征弥补传统人工特征设计困难导致的目标误提取、漏提取问题,又可通过人工特征的设计完善自学习语义特征导致的建筑物提取结果边缘拟合较差、局部缺失问题。

    融合自学习语义特征与设计特征的遥感影像目标提取方法

    公开(公告)号:CN110544260B

    公开(公告)日:2020-06-30

    申请号:CN201910777761.0

    申请日:2019-08-22

    申请人: 河海大学

    IPC分类号: G06T7/136 G06T5/00 G06T7/181

    摘要: 本发明公开了一种融合自学习语义特征与设计特征的遥感影像目标提取方法,包括如下步骤:使用人工设计的边缘算子对遥感影像提取内部边缘点,依据边缘点完成图像初始分割并标记分割对象;通过改进的Mask R‑CNN模型学习并提取建筑物语义特征,根据自学习语义特征提取建筑物掩膜图像;融合基于边缘算子的遥感影像分割图与掩膜图像获得最终建筑物提取图。本发明从建筑物的自学习语义特征与人工设计特征两个角度出发,完成建筑物提取。模型既可以通过自学习语义特征弥补传统人工特征设计困难导致的目标误提取、漏提取问题,又可通过人工特征的设计完善自学习语义特征导致的建筑物提取结果边缘拟合较差、局部缺失问题。