-
公开(公告)号:CN104992164B
公开(公告)日:2018-06-19
申请号:CN201510439586.6
申请日:2015-07-23
申请人: 河海大学
IPC分类号: G06K9/00
摘要: 本发明公开一种动态振荡信号模型参数辨识方法,在对模型参数进行辨识时,考虑了参数所受到的实际约束。首先,给出状态估计值和状态估计误差协方差的初始值;接着,在最大迭代时刻范围内,运用扩展卡尔曼滤波的预测步得到下一时刻的状态预测值和预测误差协方差;然后,运用扩展卡尔曼滤波的滤波步对该时刻的状态预测值和预测误差协方差进行更新,得到该时刻的状态估计值和估计误差协方差。接着,判定该时刻的状态估计值是否满足相应的实际约束条件,若满足,则转入对下一时刻的状态估计;若不满足,则对该时刻的状态估计值运用改进粒子群算法进行寻优,得到该时刻满足约束条件的最优状态估计值,并在此基础上对下一时刻的状态进行估计。
-
公开(公告)号:CN104992164A
公开(公告)日:2015-10-21
申请号:CN201510439586.6
申请日:2015-07-23
申请人: 河海大学
IPC分类号: G06K9/00
CPC分类号: G06K9/00503 , G06K9/00523
摘要: 本发明公开一种动态振荡信号模型参数辨识方法,在对模型参数进行辨识时,考虑了参数所受到的实际约束。首先,给出状态估计值和状态估计误差协方差的初始值;接着,在最大迭代时刻范围内,运用扩展卡尔曼滤波的预测步得到下一时刻的状态预测值和预测误差协方差;然后,运用扩展卡尔曼滤波的滤波步对该时刻的状态预测值和预测误差协方差进行更新,得到该时刻的状态估计值和估计误差协方差。接着,判定该时刻的状态估计值是否满足相应的实际约束条件,若满足,则转入对下一时刻的状态估计;若不满足,则对该时刻的状态估计值运用改进粒子群算法进行寻优,得到该时刻满足约束条件的最优状态估计值,并在此基础上对下一时刻的状态进行估计。
-