-
公开(公告)号:CN105187390B
公开(公告)日:2018-10-19
申请号:CN201510486989.6
申请日:2015-08-10
Applicant: 济南大学
IPC: H04L29/06
Abstract: 本发明公开了主动式移动终端恶意软件网络流量数据集获取方法及系统,对移动终端恶意软件进行反编译,反编译后得到与恶意软件相对应的配置文件;从与恶意软件相对应的配置文件中提取移动终端恶意软件自动安装和运行所需要的参数;移动终端恶意软件的自动安装;利用激活优先机制实现对移动终端恶意软件激活与运行,移动终端恶意软件激活与运行后获取移动终端恶意软件网络流量;建立移动终端恶意目标列表;根据建立的移动终端恶意目标列表分离出移动终端恶意软件与远程控制服务器之间或恶意服务器之间所产生的恶意交互流量。对采集到的网络流量数据,本发明以网络数据流的方式从混合流量中提取到恶意软件所产生的恶意流量。
-
公开(公告)号:CN105187394A
公开(公告)日:2015-12-23
申请号:CN201510487184.3
申请日:2015-08-10
Applicant: 济南大学
CPC classification number: H04L63/1416 , H04L67/28
Abstract: 本发明公开了具有移动终端恶意软件行为检测能力的代理服务器及方法,静态检测模块,通过调度静态检测接口对下载的移动应用进行静态检测;动态检测模块,通过调用第三方动态检测服务提供的API接口实现对静态检测模块检测为正常的移动应用做第二重检测;流量行为分析模块,流量行为分析模块对用户所安装的应用的流量进行处理并通过流量检测服务模型检测该流量行为是否为恶意软件所产生。本发明设计了一种具有三重检测能力的新型代理服务器。通过第一、二重的检测,基本保证了用户所安装的移动应用是安全的,通过第三重的流量检测,保证恶意软件产生恶意行为时进行有效识别。
-
公开(公告)号:CN105187392A
公开(公告)日:2015-12-23
申请号:CN201510487144.9
申请日:2015-08-10
Applicant: 济南大学
IPC: H04L29/06
CPC classification number: H04L63/145 , H04L63/1408
Abstract: 本发明公开了一种基于网络接入点的移动终端恶意软件检测方法及其系统,该方法包括:用户移动终端通过网络接入点访问网络,向检测服务器申请认证;认证处理后,通过动态分配流量镜像端口进行采集且缓存用户移动终端网络流量至流量数据处理服务器,然后对获取的用户移动终端网络流量进行识别和隐私处理,然后提取并聚合网络流量数据特征,形成特征集,并传送至检测服务器;读取特征集,检测服务器中的检测模型对特征集中特征进行检测,检测结果通过网络接入点返回给用户。该方法在网络接入点利用移动终端产生的网络流量来检测终端设备是否安装有恶意软件,通过分析网络流量特征,立即检测出在移动终端产生恶意流量时移动终端上运行的恶意软件。
-
公开(公告)号:CN105187394B
公开(公告)日:2018-01-12
申请号:CN201510487184.3
申请日:2015-08-10
Applicant: 济南大学
Abstract: 本发明公开了具有移动终端恶意软件行为检测能力的代理服务器及方法,静态检测模块,通过调度静态检测接口对下载的移动应用进行静态检测;动态检测模块,通过调用第三方动态检测服务提供的API接口实现对静态检测模块检测为正常的移动应用做第二重检测;流量行为分析模块,流量行为分析模块对用户所安装的应用的流量进行处理并通过流量检测服务模型检测该流量行为是否为恶意软件所产生。本发明设计了一种具有三重检测能力的新型代理服务器。通过第一、二重的检测,基本保证了用户所安装的移动应用是安全的,通过第三重的流量检测,保证恶意软件产生恶意行为时进行有效识别。
-
公开(公告)号:CN105072045B
公开(公告)日:2018-12-18
申请号:CN201510487044.6
申请日:2015-08-10
Applicant: 济南大学
IPC: H04L12/771 , H04W28/10 , H04L29/06 , H04W24/08
Abstract: 本发明公开了一种具有恶意软件网络行为发现能力的无线路由器,包括:网络流量获取模块,用于从采集应用软件所产生的网络流量中采集流量,并传输到流量行为分析模块;流量行为分析模块包括特征提取模块,用于从网络流量数据中提取出各类特征,特征分类模块,在特征提取之后,按照不同的特征类型对提取的特征进行分类;模型模块,对每一种类型的特征,均有与之相适应的检测模型;配置模块,用于实现模型选择,补丁控制和获取输出功能,补丁检测与结果输出模块,用于对配置模块的补丁检测及配置模块的结果输出。针对不同的特征类型设计的不同的检测模型可以在一定程度上提高了检测的准确度,满足了用户的个性化需求。
-
公开(公告)号:CN105187395B
公开(公告)日:2018-10-23
申请号:CN201510487185.8
申请日:2015-08-10
Applicant: 济南大学
IPC: H04L29/06
Abstract: 本发明公开了基于接入路由器进行恶意软件网络行为检测的方法及系统,无线路由器识别接入的移动终端,同意其联网请求,并开始抓取该移动终端通过上网产生的流量,将采集的网络流量传入流量行为分析模块,进行基于流量的安全检测;检测模型服务器通过流量数据建立检测模型,并将检测模型存储在检测模型服务器中;检测模型服务器定期的更新接入路由器的流量行为分析模块,增强接入路由器的安全防护;通过无线路由器自主选择所需要的检测模型,检测模型开始对输入的流量数据进行处理并输出检测结果。本发明避免了在用户移动终端安装检测程序所带来的对移动终端资源消耗大的问题,同时解决了在实际使用中大规模部署的问题。
-
公开(公告)号:CN105187395A
公开(公告)日:2015-12-23
申请号:CN201510487185.8
申请日:2015-08-10
Applicant: 济南大学
IPC: H04L29/06
CPC classification number: H04L63/145 , H04L63/1408
Abstract: 本发明公开了基于接入路由器进行恶意软件网络行为检测的方法及系统,无线路由器识别接入的移动终端,同意其联网请求,并开始抓取该移动终端通过上网产生的流量,将采集的网络流量传入流量行为分析模块,进行基于流量的安全检测;检测模型服务器通过流量数据建立检测模型,并将检测模型存储在检测模型服务器中;检测模型服务器定期的更新接入路由器的流量行为分析模块,增强接入路由器的安全防护;通过无线路由器自主选择所需要的检测模型,检测模型开始对输入的流量数据进行处理并输出检测结果。本发明避免了在用户移动终端安装检测程序所带来的对移动终端资源消耗大的问题,同时解决了在实际使用中大规模部署的问题。
-
公开(公告)号:CN105072045A
公开(公告)日:2015-11-18
申请号:CN201510487044.6
申请日:2015-08-10
Applicant: 济南大学
IPC: H04L12/771 , H04W28/10 , H04L29/06 , H04W24/08
Abstract: 本发明公开了一种具有恶意软件网络行为发现能力的无线路由器,包括:网络流量获取模块,用于从采集应用软件所产生的网络流量中采集流量,并传输到流量行为分析模块;流量行为分析模块包括特征提取模块,用于从网络流量数据中提取出各类特征,特征分类模块,在特征提取之后,按照不同的特征类型对提取的特征进行分类;模型模块,对每一种类型的特征,均有与之相适应的检测模型;配置模块,用于实现模型选择,补丁控制和获取输出功能,补丁检测与结果输出模块,用于对配置模块的补丁检测及配置模块的结果输出。针对不同的特征类型设计的不同的检测模型可以在一定程度上提高了检测的准确度,满足了用户的个性化需求。
-
公开(公告)号:CN105022960A
公开(公告)日:2015-11-04
申请号:CN201510486986.2
申请日:2015-08-10
Applicant: 济南大学
IPC: G06F21/56
CPC classification number: G06F21/566
Abstract: 本发明公开了基于网络流量的多特征移动终端恶意软件检测方法及系统,从网络流量数据中提取出能够有效表征移动终端恶意软件网络行为的特征;按照不同的特征类型对提取的能够有效表征移动终端恶意软件网络行为的特征进行分类;对分类后的特征建立与之相适应的检测模型,每种类型的特征有与之对应的唯一的检测模型;每种类型的特征选择对应的检测模型并输出相应的检测结果。针对移动终端网络流量的不同特征类型,本发明设计了适应于不同的特征类型的检测模型,用户可以根据需要自主选择所需要的模型,针对不同的特征类型设计的不同的检测模型可以在一定程度上提高了检测的准确度,满足了用户的个性化需求。
-
公开(公告)号:CN105187393B
公开(公告)日:2018-05-22
申请号:CN201510487157.6
申请日:2015-08-10
Applicant: 济南大学
Abstract: 本发明公开了一种移动终端恶意软件网络行为重构方法及其系统,该方法包括:在移动终端接入网络的路由器节点设置镜像端口,采集原始移动终端恶意软件网络流量;解析原始移动终端恶意软件网络流量的DNS信息,获取移动终端恶意目标列表;根据移动终端恶意目标列表,分离移动终端恶意软件恶意行为流量;提取分离后的移动终端恶意软件恶意行为流量的DNS数据包和HTTP数据包,构建移动终端恶意软件网络行为交互时序图;根据移动终端恶意软件网络行为交互时序图,构建移动终端恶意软件网络行为模型。该方法依据网络数据流重新构建出移动终端恶意软件与外部网络之间的交互行为。
-
-
-
-
-
-
-
-
-