一种基于深度学习的高速跨摄像头单目标跟踪方法及系统

    公开(公告)号:CN110728702A

    公开(公告)日:2020-01-24

    申请号:CN201910811068.0

    申请日:2019-08-30

    摘要: 一种基于深度学习的高速跨摄像头单目标跟踪方法,涉及计算机视觉技术领域,解决现有技术以多摄像头多目标跟踪,需要对所有轨迹片提取特征并全局关联,而无法只对部分数据处理的问题,本发明包括建立行人检测模型;单相机内多目标跟踪,基于卡尔曼滤波算法进行多目标跟踪;轨迹片代表图片筛选;采用预先训练好的行人再识别模型提取行人外观特征;在单摄像头域内,设计搜索约束条件和关联;设计的跨摄像头轨迹方向约束以及基于轨迹方向约束的跨摄像头轨迹关联的步骤实现单目标跟踪。实验结果和分析表明本发明所述的跟踪方法取得较好的实时性和准确性。

    一种视频交互式行为识别方法及装置

    公开(公告)号:CN110717384A

    公开(公告)日:2020-01-21

    申请号:CN201910811059.1

    申请日:2019-08-30

    IPC分类号: G06K9/00 G06T5/30 G06T7/90

    摘要: 本发明提供一种视频交互式行为识别方法及装置,所述方法包括:根据运动距离标注主动参与者及被动参与者;利用有效的15个骨架关键关节点数据,计算相对距离特征向量;并对所述相对距离特征向量进行编码,得到表征所述交互式行为的骨架序列的彩色空间RGB图片;对所述彩色空间RGB图片进行视觉增强处理,输入到3-stream神经网络识别所述交互式行为。根据本发明的方案,能够对交互式行为进行有效识别且交互式行为识别准确率高、效率高。