一种含风光水多源互补微网混合储能容量最佳配比方法

    公开(公告)号:CN104701871B

    公开(公告)日:2017-08-18

    申请号:CN201510077138.6

    申请日:2015-02-13

    IPC分类号: H02J3/28 G05B13/04

    CPC分类号: Y02E70/30

    摘要: 一种含风光水多源互补微网混合储能容量最佳配比方法,该方法根据当地风、光、水等自然资源的分布情况,模拟风力发电、光伏发电、以及水力发电的年输出功率曲线,结合微网的年负荷曲线,以系统成本和功率波动为目标函数,以蓄电池容量和超级电容容量为优化变量,同时确定功率平衡约束、最大瞬时功率约束、供电可靠性约束、超级电容充放电电流及电压约束、蓄电池SOC约束等约束条件,建立含风、光、水的微网混合储能优化配置模型;采用含模糊决策的多目标规划GA‑PSO算法对目标函数进行优化求解,得到混合储能容量的最佳配比。本发明与传统GA算法和PSO算法相比,收敛速度更快,且较好地回避了多目标优化算法中目标函数相互冲突的问题。

    一种面向最小碳排放的主动配电网运行控制方法

    公开(公告)号:CN103544656B

    公开(公告)日:2016-08-17

    申请号:CN201310506950.7

    申请日:2013-10-24

    IPC分类号: G06Q50/06

    摘要: 本发明涉及一种面向最小碳排放的主动配电网运行控制方法,属于低碳电力与控制技术领域。该方法包括:录入主动配电网的拓扑结构、系统参数、运行初始状态数据,形成基础数据库;设置主动配电网运行控制变量,通过调节分布式电源在每个时段的输出功率以及储能设备在每个时段的运行模式和充电、放电功率控制主动配电网的碳排放;建立主动配电网面向低碳的运行优化模型,求解模型并实施控制。本方法可实现主动配电网的设备协调控制和运行优化控制,从而充分挖掘电力行业在配用电环节的低碳节能潜力,有效降低配电网碳排放。

    分布式混合发电系统电源规划方法

    公开(公告)号:CN103606913B

    公开(公告)日:2015-12-09

    申请号:CN201310498966.8

    申请日:2013-10-22

    IPC分类号: H02J3/00

    摘要: 本发明提出一种分布式混合发电系统电源规划方法,包括以下步骤:进行前期规划,确定安装风电机组、光伏阵列、小型水电站和储能蓄电池的考虑安装数量,按照排列组合的方法生成多套可选规划方案;分别建立风电机组、光伏阵列、小型水电站以及储能蓄电池的输出功率模型;计算每一套可选规划方案的系统负荷缺电率和系统能量过剩率,并分别判断每一套可选规划方案是否符合系统可靠性要求,若符合则执行后续步骤,若不符合则舍弃;对于多套符合系统可靠性要求的可选规划方案,根据其系统负荷缺电率和系统能量过剩率,计算对应的费用贴现值并按升序排列,选择费用贴现值小的作为推荐规划方案。本发明具有全面真实、稳定可靠且效益较优的优点。

    微电网运行控制方法
    5.
    发明公开

    公开(公告)号:CN103887825A

    公开(公告)日:2014-06-25

    申请号:CN201410075204.1

    申请日:2014-03-03

    IPC分类号: H02J3/46 G06F19/00

    摘要: 本发明提出一种微电网运行控制方法。该方法包括以下步骤:获取微电网中多个风电和光伏发电系统的数据信息,并根据数据信息分别计算每个风电和光伏发电系统的输出功率;根据微电网中多个水电发电系统的输出功率的预设限定条件生成水电发电系统中预设个数的粒子,以及根据预设个数的粒子生成粒子群;计算粒子群中每个粒子的适应度值,并确定粒子群中的全局最优粒子和每个粒子的个体最优粒子;当符合预设的终止条件时,根据全局最优粒子调整水电发电系统的输出功率。本发明实施例的方法,通过有效控制水电发电系统中的输出功率,可与风电和光伏发电系统形成良好互补,既能保证电力系统和水库的安全可靠,又能使微电网售电收入最大。

    基于碳排放流的主动配电网用户用电碳排放量的测量方法

    公开(公告)号:CN103218690A

    公开(公告)日:2013-07-24

    申请号:CN201310143671.9

    申请日:2013-04-23

    申请人: 清华大学

    IPC分类号: G06Q10/06 G06Q50/06

    CPC分类号: Y02P90/84

    摘要: 本发明涉及基于碳排放流的主动配电网用户用电碳排放量的测量方法,属于低碳电力及电力系统运行测量技术领域。该方法包括:从电网数据库录入主动配电网的拓扑结构、系统参数、运行状态数据,形成基础数据库;从基础数据库中选取数据构造主动配电网碳排放流的计算矩阵和向量;判断和去除主动配电网中影响碳排放流求解可行性的零通量节点;用所构造的矩阵和向量求解主动配电网中各非电源节点在各时段的节点碳势;根据求得的主动配电网中各用户节点的碳势计算各节点的用户在各时间段的用电碳排放量,进而完成对单时间段和多时间段内用户用电碳排放量的测量。本方法将碳排放流理论应用于主动配电网中,从而对用户用电的碳排放实现可观和可测。

    一种面向最小碳排放的主动配电网运行控制方法

    公开(公告)号:CN103544656A

    公开(公告)日:2014-01-29

    申请号:CN201310506950.7

    申请日:2013-10-24

    申请人: 清华大学

    IPC分类号: G06Q50/06

    摘要: 本发明涉及一种面向最小碳排放的主动配电网运行控制方法,属于低碳电力与控制技术领域。该方法包括:录入主动配电网的拓扑结构、系统参数、运行初始状态数据,形成基础数据库;设置主动配电网运行控制变量,通过调节分布式电源在每个时段的输出功率以及储能设备在每个时段的运行模式和充电、放电功率控制主动配电网的碳排放;建立主动配电网面向低碳的运行优化模型,求解模型并实施控制。本方法可实现主动配电网的设备协调控制和运行优化控制,从而充分挖掘电力行业在配用电环节的低碳节能潜力,有效降低配电网碳排放。

    微电网运行控制方法
    8.
    发明授权

    公开(公告)号:CN103887825B

    公开(公告)日:2016-03-23

    申请号:CN201410075204.1

    申请日:2014-03-03

    IPC分类号: H02J3/46 G06F19/00

    摘要: 本发明提出一种微电网运行控制方法。该方法包括以下步骤:获取微电网中多个风电和光伏发电系统的数据信息,并根据数据信息分别计算每个风电和光伏发电系统的输出功率;根据微电网中多个水电发电系统的输出功率的预设限定条件生成水电发电系统中预设个数的粒子,以及根据预设个数的粒子生成粒子群;计算粒子群中每个粒子的适应度值,并确定粒子群中的全局最优粒子和每个粒子的个体最优粒子;当符合预设的终止条件时,根据全局最优粒子调整水电发电系统的输出功率。本发明实施例的方法,通过有效控制水电发电系统中的输出功率,可与风电和光伏发电系统形成良好互补,既能保证电力系统和水库的安全可靠,又能使微电网售电收入最大。

    一种含风光水多源互补微网混合储能容量最佳配比方法

    公开(公告)号:CN104701871A

    公开(公告)日:2015-06-10

    申请号:CN201510077138.6

    申请日:2015-02-13

    IPC分类号: H02J3/28 G05B13/04

    CPC分类号: Y02E70/30

    摘要: 一种含风光水多源互补微网混合储能容量最佳配比方法,该方法根据当地风、光、水等自然资源的分布情况,模拟风力发电、光伏发电、以及水力发电的年输出功率曲线,结合微网的年负荷曲线,以系统成本和功率波动为目标函数,以蓄电池容量和超级电容容量为优化变量,同时确定功率平衡约束、最大瞬时功率约束、供电可靠性约束、超级电容充放电电流及电压约束、蓄电池SOC约束等约束条件,建立含风、光、水的微网混合储能优化配置模型;采用含模糊决策的多目标规划GA-PSO算法对目标函数进行优化求解,得到混合储能容量的最佳配比。本发明与传统GA算法和PSO算法相比,收敛速度更快,且较好地回避了多目标优化算法中目标函数相互冲突的问题。

    一种风光水互补型微电网黑启动控制方法

    公开(公告)号:CN103986186A

    公开(公告)日:2014-08-13

    申请号:CN201410201098.7

    申请日:2014-05-13

    IPC分类号: H02J3/38

    CPC分类号: Y02E10/563

    摘要: 本发明涉及一种风光水互补型微电网黑启动控制方法,属于电力系统微电网优化控制技术领域,该方法包括:读入微电网基础数据;将满足黑启动条件的分布式电源作为黑启动电源备选机组;将黑启动电源备选机组按功率大小排序,依次取其中一台机组作为黑启动机组;各分布式电源按照是否是黑启动电源、是否参加孤网频率控制选择控制策略和控制器参数,得到备选微电网黑启动方案;对得到的备选微电网黑启动方案进行仿真计算,判断备选方案的黑启动过程及孤网运行时,微电网的各节点电压和微电网频率是否满足稳定、安全限值等约束条件,满足约束条件的,作为可行的方案,并在可行方案中选择最优方案。本方法确保风光水互补型微电网具有较高的可靠性和经济性。