太阳能建筑一体化供热系统及其控制方法

    公开(公告)号:CN110529915A

    公开(公告)日:2019-12-03

    申请号:CN201910867566.7

    申请日:2019-09-13

    摘要: 本发明公开了一种太阳能建筑一体化供热系统,所述供热系统由光伏发电系统、PVT光热系统以及电热地板供暖系统组成,所述光伏发电系统包括光伏板以及电控单元,所述PVT光热系统包括由光伏板与建筑墙体组成的光热空气流道以及室内进风口风阀、室内出风口风阀、室外进风阀和室外排风阀,所述电热地板供暖系统包括设置在楼板内的供暖单元,所述供暖单元通过电线分别与市电和光伏发电系统的电控单元连接。本发明不仅免维护,而且使用寿命长,不仅克服了太阳能热水系统防冻和防过热、传统被动太阳能和太阳能热风系统蓄放热速率不足等核心问题,而且增加了供暖系统的保障性,同时在非供暖季节还可为建筑其他用电提供电力,大大提高了系统经济性。

    一种交叉型不间断除霜空气源热泵机组的构建方法

    公开(公告)号:CN117073261B

    公开(公告)日:2024-07-02

    申请号:CN202311084546.5

    申请日:2023-08-25

    摘要: 本发明公开了一种交叉型不间断除霜空气源热泵机组的构建方法,通过将2组V型翅片换热器的L翅片换热器并联共同作为一组蒸发器,并与第一压缩机、壳管换热器、第一电子膨胀阀、第一单向阀、第二单向阀、第一球阀、第一三通阀、第二三通阀、第一电磁阀、第一气液分离器共同组成第一制冷剂循环系统;将2组V型翅片换热器的R翅片换热器并联共同作为另一组蒸发器,并与第二压缩机、壳管换热器、第二电子膨胀阀、第三单向阀、第四单向阀、第二球阀、第三三通阀、第四三通阀、第二电磁阀、第二气液分离器共同组成第二制冷剂循环系统;两制冷剂循环系统相互独立,共同组成交叉型不间断除霜空气源热泵机组。其结构简单,操作方便且能够高效、快速除霜。

    一种空气密度对空气源热泵供热系统性能影响的仿真方法

    公开(公告)号:CN115270521A

    公开(公告)日:2022-11-01

    申请号:CN202211171066.8

    申请日:2022-09-26

    摘要: 本发明公开了一种空气密度对空气源热泵供热系统性能影响的仿真方法,包括在Solkane软件中,建立热泵循环流程,得到蒸发温度、制冷剂流量和蒸发器吸热量;在CoilDesigner软件中,建立热泵机组的蒸发器模型并输入室外气象参数,读取从Solkane软件反馈得到的蒸发温度与制冷剂流量,计算得到蒸发器吸热量;对耦合计算得到的蒸发器吸热量进行误差判断,循环计算,直至符合误差要求时,输出热泵机组的制热量、蒸发器侧进出风温差和热泵机组功耗,计算热泵机组制热性能。本发明能够计算得到不同空气密度下热泵供热系统性能的变化情况,特别适用于高海拔地区空气源热泵供热系统性能评价。

    一种控制雾霾天室内空气污染的空调箱及其运行方法

    公开(公告)号:CN103322628A

    公开(公告)日:2013-09-25

    申请号:CN201310287282.3

    申请日:2013-07-10

    IPC分类号: F24F3/16

    摘要: 本发明公开了一种控制雾霾天室内空气污染的空调箱,所述空调箱分别与新风管、送风管以及回风管连通,所述新风管通过阀门与空调箱内的新风过滤段连通,所述新风过滤段分隔为相互独立的上、下新风风道,在所述上新风风道内沿送风方向依次设置有第一新风阀、至少两级新风过滤器、新风风机以及第二新风阀,所述至少两级新风过滤器沿送风方向过滤效率依次增大,在所述下新风风道内沿送风方向依次设置有第三新风阀、第一新风过滤器以及第四新风阀。在平时工况下,新风由下新风风道进入混合段,而在雾霾天气工况下,新风则由上新风风道进入混合段,从而达到对雾霾天气室内环境颗粒物污染的控制,且不增加平时工况空调系统阻力,运行经济且控制简单方便。

    基于建筑与气候能量交互作用的建筑设计方法及系统

    公开(公告)号:CN118520581A

    公开(公告)日:2024-08-20

    申请号:CN202411003488.3

    申请日:2024-07-25

    IPC分类号: G06F30/13 G06F119/08

    摘要: 本发明公开了基于建筑与气候能量交互作用的建筑设计方法及系统,涉及建筑领域,方法包括:获取建筑的非透明围护结构的第一外表面积和第一耗能量,以及建筑的透明围护结构在多个朝向的外表子面积和第二耗能量;根据外表子面积和第二耗能量确定透明围护结构朝向的第三耗能量;根据第一外表面积和第一耗能量确定非透明围护结构的第四耗能量;根据第三耗能量与第四耗能量确定透明围护结构朝向所对应的等效系数;根据等效系数和外表子面积确定透明围护结构的等效外表面积;根据第一外表面积、等效外表面积以及体积计算出建筑形体节能系数;根据形体节能系数对建筑内的能耗设备的负荷进行分析,得到建筑的能耗分析结果。