-
公开(公告)号:CN115601833A
公开(公告)日:2023-01-13
申请号:CN202211252124.X
申请日:2022-10-13
申请人: 湖北工业大学(CN)
摘要: 本发明提出了一种融合双层注意力与多流卷积的肌电手势识别记忆网络方法及系统。以多流卷积神经网络(MS‑CNN)为基准模型,在此加入通道注意力层(CAM),使每个单流CNN模型在提取特征时能够学习到更为细化的特征,并滤除无用的特征信息,提升了网络的泛化能力。同时,将加入时序注意力层(TSA)的长短期记忆网络(LSTM)应用至手势识别方法中,以解决CNN模型忽略时序信息的问题,并减少无关特征。