Si/SiC/C纳米纤维膜的制备方法、电池负极及锂离子电池

    公开(公告)号:CN113097469B

    公开(公告)日:2023-04-18

    申请号:CN202110304882.0

    申请日:2021-03-22

    摘要: 本发明公开一种Si/SiC/C纳米纤维膜的制备方法、电池负极及锂离子电池,该制备方法包括以下步骤:S10、将导电聚合物、硅源和有机溶剂混合均匀,得到纺丝溶液;S20、将纺丝溶液进行静电纺丝,得到前驱体薄膜;S30、将前驱体薄膜加热至200~300℃,并保温1~5h,得到SiO2/C纳米膜;S40、在惰性气氛下,将SiO2/C纳米膜继续加热至1000~2000℃,并保温2~20h,得到Si/SiC/C纳米纤维膜。通过碳化硅的添加,提高了碳、硅材料的相容性,且能在一定程度上抑制硅材料的体积膨胀效应,从而使制得的Si/SiC/C纳米纤维膜用作锂离子电池的负极时,表现出较高的容量和优异的循环稳定性能;此外,将Si/SiC/C纳米纤维膜用作负极时,直接裁剪成适宜尺寸后即可,使用方便,同时提高了电池的整体能量密度。

    一种碳化钛/碳纳米膜材料的制备方法及其应用

    公开(公告)号:CN113224293B

    公开(公告)日:2022-03-29

    申请号:CN202110361320.X

    申请日:2021-04-02

    摘要: 本发明提供了一种碳化钛/碳纳米膜材料的制备方法及其应用,该纳米膜材料由聚丙烯腈、聚氧化乙烯、聚苯并咪唑和钛源在DMF中按照限定浓度进行反应制备成纺丝前驱体溶液,将纺丝前驱体溶液进行静电纺丝得到前驱体薄膜,将前驱体薄膜烘干后在空气中预氧化,再在惰性气体氛围中分两步高温煅烧,得到具有三维网状结构的碳化钛/碳纳米膜材料。将该碳化钛/碳纳米膜材料用作锂离子电池负极自支撑材料,具有导电性好、强度高、倍率性能和循环稳定性优异的优点,可以使锂离子电池完全不使用刚性集流体、粘结剂和导电剂等非活性材料,大大提高了电池的整体能量密度。

    一种立方体形氮化钼的制备方法及其应用

    公开(公告)号:CN113321192A

    公开(公告)日:2021-08-31

    申请号:CN202110560014.9

    申请日:2021-05-21

    摘要: 本发明公开了一种立方体形氮化钼的制备方法及其应用,属于锂离子电池电极材料领域,所述制备方法如下:S1、将尿素的乙醇溶液、三聚氰胺的乙醇溶液和四水合钼酸铵的乙醇溶液进行混合,搅拌得到混合液;所述混合液中四水合钼酸铵、尿素、三聚氰胺的质量比为5~11:100:3~6;S2、将混合液在室温下陈化,形成溶胶/凝胶,再冷冻干燥,形成固体;S3、将所得的固体进行预烧后,再进行热处理,得到前驱体粉体;S4、将所得的前驱体粉体在氮气气氛下进行焙烧,冷却至室温后,得到氮化钼电极材料;本发明通过简单的工艺获得纳米级氮化钼粉末产品,产品具有立方体形结构,晶粒尺寸小、粒度均匀,用作锂离子电池负极材料具备优良的循环性能和较高的比容量。

    一种ZnSnO3纳米棒/NC纳米膜复合材料及其制备方法与应用

    公开(公告)号:CN113716602B

    公开(公告)日:2023-03-24

    申请号:CN202110895603.2

    申请日:2021-08-05

    摘要: 本发明提供一种ZnSnO3纳米棒/NC纳米膜复合材料的制备方法,包括以下步骤:将锡源、氢氧化钠、锌源溶于去离子水中获得混合溶液,微波水热反应得到浑浊液;浑浊液经离心和洗涤,获得ZnSn(OH)6前驱体;将所述前驱体进行煅烧,获得ZnSnO3纳米棒;将聚丙烯腈与所述ZnSnO3纳米棒按1:(0.5~4)的质量比溶解于氮氮二甲基甲酰胺中,混匀得到预溶液,将预溶液静电纺丝得到预产物;预产物经过固化和煅烧,得到ZnSnO3纳米棒/NC纳米膜复合材料。本发明制备的ZnSnO3纳米棒粒径均匀、尺寸小,可以很好与氮掺杂碳复合,形成具有极好结构强度和机械强度的自支撑结构,制备得到的复合材料可以直接作为自支撑锂电负极材料,具有极好的电化学性能和安全稳定性。

    复合添加剂、木塑板及其制备方法

    公开(公告)号:CN113388159A

    公开(公告)日:2021-09-14

    申请号:CN202110650475.5

    申请日:2021-06-10

    摘要: 本发明公开一种复合添加剂、木塑板及其制备方法,所述复合添加剂包括碳材料和季铵盐,且所述复合添加剂中,碳材料和季铵盐的物质的量的比例为1:0.1~5。本发明开发出一种应用于木塑板材的复合添加剂,碳材料具有良好的导电性能,季铵盐具有抑菌作用,本发明通过将碳材料和季铵盐按照一定的比例混合,使得季铵盐能够很好地将碳材料连接起来,一方面能够进一步提高碳材料的加工性能,另一方面能够提升碳材料的分散性能,季铵盐和碳材料协同作用也进一步提高了复合添加剂的抗静电性。将该复合添加剂与木粉、PVC粉混合挤出得到的木塑板不仅具有抑菌效果,还能抗静电,使得木塑板的功能性更丰富,具有较强的市场竞争力。

    一种碳化钛/碳纳米膜材料的制备方法及其应用

    公开(公告)号:CN113224293A

    公开(公告)日:2021-08-06

    申请号:CN202110361320.X

    申请日:2021-04-02

    摘要: 本发明提供了一种碳化钛/碳纳米膜材料的制备方法及其应用,该纳米膜材料由聚丙烯腈、聚氧化乙烯、聚苯并咪唑和钛源在DMF中按照限定浓度进行反应制备成纺丝前驱体溶液,将纺丝前驱体溶液进行静电纺丝得到前驱体薄膜,将前驱体薄膜烘干后在空气中预氧化,再在惰性气体氛围中分两步高温煅烧,得到具有三维网状结构的碳化钛/碳纳米膜材料。将该碳化钛/碳纳米膜材料用作锂离子电池负极自支撑材料,具有导电性好、强度高、倍率性能和循环稳定性优异的优点,可以使锂离子电池完全不使用刚性集流体、粘结剂和导电剂等非活性材料,大大提高了电池的整体能量密度。

    一种三维层状Fe/C材料的制备方法及其应用

    公开(公告)号:CN114695863B

    公开(公告)日:2024-05-14

    申请号:CN202210327963.7

    申请日:2022-03-31

    IPC分类号: H01M4/38 H01M4/62

    摘要: 本发明公开了一种三维层状Fe/C材料的制备方法及其应用,属于锂离子电池电极材料的制备技术领域。一种三维层状Fe/C材料的制备方法,包括如下步骤:S1、在保护气体氛围下,将碳源、二茂铁和金属氢化物按质量比1:(2~6):(0.8~1.5)混合,球磨,得到前驱体;S2、在保护气体氛围下,将步骤S1得到的前驱体进行焙烧,再冷却至室温,经过酸洗、干燥后得到所述三维层状Fe/C材料。本发明的制备方法操作简单,所需温度相较于传统热处理较低,低温可以避免碳的形貌受到破坏,使制得的Fe/C材料结构和形貌均一,结构稳定性好,用作锂离子电池电极材料时具有优异的循环稳定性,循环200次后材料的放电比容量为554mAh/g。

    类普鲁士蓝衍生金属氧化物碳氮纳米纤维柔性电极材料及其制备方法和应用

    公开(公告)号:CN113106559B

    公开(公告)日:2022-11-18

    申请号:CN202110231184.2

    申请日:2021-03-02

    摘要: 本发明涉及一种类普鲁士蓝衍生金属氧化物碳氮纳米纤维柔性电极材料及其制备方法和作为锂离子电池负极材料的应用。方法:先制备类普鲁士蓝纳米颗粒,将其与聚丙烯腈按不同比例溶于N‑N二甲基甲酰胺溶液作为纺丝前驱体。通过静电纺丝将类普鲁士蓝纳米颗粒分散在聚丙烯腈纤维表面和内部得到前驱体薄膜,经预氧化和碳化,制备出CoO@ZnO@碳氮纳米纤维复合材料。该复合材料可保持类普鲁士蓝纳米颗粒独特的框架结构做锂离子存储器,碳氮纳米纤维可以促进电子快速转移以提高电极材料的电导率,将具有独特结构的前驱体衍生材料镶嵌在碳氮纳米纤维上形成一种三维导电网络结构,作为锂离子电池负极材料展示出较高的可逆比容量和优异的循环性能。

    一种金属氢化物原位合成硅/碳纳米复合材料的制备方法及其应用

    公开(公告)号:CN114684821A

    公开(公告)日:2022-07-01

    申请号:CN202210327883.1

    申请日:2022-03-31

    摘要: 本发明公开了一种金属氢化物原位合成硅/碳纳米复合材料的制备方法及其应用,属于锂离子电池电极材料领域,制备方法如下:S1.在保护气体氛围下,将碳酸盐、纳米二氧化硅、二茂铁和金属氢化物混合,球磨后加入氯化铝,得到前驱体;碳酸盐、纳米二氧化硅、二茂铁和金属氢化物的质量比为1:(2.5~20):(3~5):(3~30),氯化铝与纳米二氧化硅的质量比为(5~15):1;S2.在保护气体氛围下,将步骤S1所得的前驱体进行焙烧,再冷却至室温,经过酸洗、干燥后得到硅/碳纳米复合材料。本发明的制备方法反应温度低,硅的产率高;且通过一步煅烧制得硅/碳纳米复合材料,工艺简单。制备的硅/碳纳米复合材料形貌均匀,硅在碳材料中分布均匀,可以有效缓冲硅的体积效应。

    一种ZnSnO3纳米棒材料的制备方法及其储能应用

    公开(公告)号:CN113697846B

    公开(公告)日:2022-04-29

    申请号:CN202110894134.2

    申请日:2021-08-05

    摘要: 本发明属于钠离子电池技术领域,具体公开了一种ZnSnO3纳米棒材料的制备方法及其储能应用。本发明采用微波水热法制备得到了ZnSnO3纳米棒材料,具体方法为:将氢氧化钠、锡源和锌源在冰浴条件下混合,然后在一定的微波水热条件下得到前驱体ZnSn(OH)6,再将所得前驱体ZnSn(OH)6置于管式炉中,在惰性气氛保护下,升温至300‑600℃,保温2‑10h,得到ZnSnO3纳米棒材料。该ZnSnO3纳米棒材料应用于钠离子电池负极材料时,具有容量高、循环稳定性能好的特点,该材料在0.1 A·g‑1的电流密度下,电化学性能稳定,循环100周后,比容量仍保持在430 mAh·g‑1,库伦效率接近100%。