-
公开(公告)号:CN108629302A
公开(公告)日:2018-10-09
申请号:CN201810373657.0
申请日:2018-04-24
Applicant: 电子科技大学
Abstract: 本发明涉及的是一种基于卷积神经网络的用眼行为识别方法,具体是采用卷积神经网络实现对多通道的眼电(Electro-oculogram,EOG)信号的个体用眼行为模式识别方法,包括EOG信号采集模块、信号预处理模块和眼动信号-行为状态判断模块。EOG信号采集模块有别于传统采集方法,适用于可穿戴移动设备,且采用干电极,更好的实现对眼电信号的采集。信号预处理模块使用Butterworth滤波器,对原始数据中干扰信号进行滤波,并用Z-score方法进行标准化,接着用信号分帧提取算法将原始信号切割成一个个数据帧,便于神经网络训练。眼动信号-行为状态判断模块使用CNN神经网络对EOG信号进行分类,实现对阅读、休息和使用手机用眼行为的判断。