基于深度学习的人流量检测方法

    公开(公告)号:CN112270381B

    公开(公告)日:2022-06-03

    申请号:CN202011279131.X

    申请日:2020-11-16

    Abstract: 本发明公开了一种基于深度学习的人流量检测方法,涉及人工智能技术领域。本发明使用的轻量级神经网络模型,与主流的卷积神经网络相比,通过深度可分离卷积将标准卷积核进行分解,减少了计算量,加速了计算,具有优良的性能,在保持传统模型性能的前提下,能降低模型大小同时提升速度;克服了模型过于庞大面临的内存不足的缺点,适用于移动端或嵌入式芯片的部署。本发明实现的视频监控下的人流量检测方法,基于该轻量级网络模型框架,自制实用型数据集,适用于特殊场景,如婴儿车数量多、行人移动速度慢的公园、文化广场;在如传染病疫情期间的特殊时期,能够及时计算人流量并疏散过密人群,加强对人们,特别是对婴幼儿的防护。

    基于深度学习的人流量检测方法

    公开(公告)号:CN112270381A

    公开(公告)日:2021-01-26

    申请号:CN202011279131.X

    申请日:2020-11-16

    Abstract: 本发明公开了一种基于深度学习的人流量检测方法,涉及人工智能技术领域。本发明使用的轻量级神经网络模型,与主流的卷积神经网络相比,通过深度可分离卷积将标准卷积核进行分解,减少了计算量,加速了计算,具有优良的性能,在保持传统模型性能的前提下,能降低模型大小同时提升速度;克服了模型过于庞大面临的内存不足的缺点,适用于移动端或嵌入式芯片的部署。本发明实现的视频监控下的人流量检测方法,基于该轻量级网络模型框架,自制实用型数据集,适用于特殊场景,如婴儿车数量多、行人移动速度慢的公园、文化广场;在如传染病疫情期间的特殊时期,能够及时计算人流量并疏散过密人群,加强对人们,特别是对婴幼儿的防护。

Patent Agency Ranking