基于迁移学习的城市地下空间沉降预测方法

    公开(公告)号:CN119885873A

    公开(公告)日:2025-04-25

    申请号:CN202411962068.8

    申请日:2024-12-30

    Applicant: 聊城大学

    Abstract: 本发明涉及建筑信息化技术领域,更具体地说,涉及基于迁移学习的城市地下空间沉降预测方法及其系统,包括:获取目标城市的地质特征数据、施工工艺数据和历史沉降监测数据;获取具有丰富沉降数据的源域城市的地质特征数据、施工工艺数据和历史沉降监测数据;基于所述源域城市数据,构建并训练源域神经网络模型;基于所述目标城市数据和所述源域神经网络模型,构建目标域神经网络模型;根据所述目标域神经网络模型和所述源域神经网络模型,执行迁移学习过程,得到融合模型;基于所述融合模型,生成目标城市的地下空间沉降预测结果,通过引入迁移学习技术,本发明能够有效利用数据丰富城市的沉降知识,提高数据匮乏城市的预测精度。

Patent Agency Ranking