-
公开(公告)号:CN110361445A
公开(公告)日:2019-10-22
申请号:CN201910696445.0
申请日:2019-07-30
Applicant: 西安交通大学 , 西安交通大学苏州研究院
IPC: G01N29/02 , G01N29/036 , G01N27/12 , G01B11/00
Abstract: 本发明公开了一种多参数高选择性CMUTs气体传感器及其使用与制备方法,本发明采用SnO2、ZnO、Fe2O3、WO3等半导体金属氧化物,将其同时用作CMUTs上电极以及敏感识别材料,利用其吸附气体后同时引起薄膜质量及上电极电阻变化的特性,实现物理、化学性质相近或相似气体分子的高选择性敏感。薄膜质量的变化会引起CMUT谐振频率的变化;上电极电阻的变化会引起CMUT上下电极间交流电压幅值的变化,进而引起CMUT薄膜振动幅值的变化,通过谐振频率和薄膜振动位移幅值这两种输出参数的变化可实现气体分子的高选择性检测。此外,由于半导体氧化物敏感材料在温度调节下具有可重复使用性,因此本发明CMUT气体传感器除了具有高选择性外,还具有很好的重复性。
-
公开(公告)号:CN110398536B
公开(公告)日:2021-01-19
申请号:CN201910696430.4
申请日:2019-07-30
Applicant: 西安交通大学 , 西安交通大学苏州研究院
IPC: G01N29/02 , G01N29/036
Abstract: 本发明公开了一种多功能薄膜高灵敏度CMUTs气体传感器及其制备方法,本发明采用石墨烯、二硫化钼以及MXenes(二维过渡金属碳化物或氮化物)等同时具有高弹性模量、气体敏感性以及导电性的多功能材料作为CMUTs敏感元件,即单层悬空薄膜同时用作CMUTs振动薄膜、上电极以及敏感材料层,实现了振动薄膜、上电极以及敏感材料层等多层复合薄膜的一体化设计,可有效减小薄膜质量、提高单元一致性以及谐振频率,进而可实现CMUTs气体传感器检测极限及检测灵敏度等综合性能的大幅提高。
-
公开(公告)号:CN110361445B
公开(公告)日:2020-10-27
申请号:CN201910696445.0
申请日:2019-07-30
Applicant: 西安交通大学 , 西安交通大学苏州研究院
IPC: G01N29/02 , G01N29/036 , G01N27/12 , G01B11/00
Abstract: 本发明公开了一种多参数高选择性CMUTs气体传感器及其使用与制备方法,本发明采用SnO2、ZnO、Fe2O3、WO3等半导体金属氧化物,将其同时用作CMUTs上电极以及敏感识别材料,利用其吸附气体后同时引起薄膜质量及上电极电阻变化的特性,实现物理、化学性质相近或相似气体分子的高选择性敏感。薄膜质量的变化会引起CMUT谐振频率的变化;上电极电阻的变化会引起CMUT上下电极间交流电压幅值的变化,进而引起CMUT薄膜振动幅值的变化,通过谐振频率和薄膜振动位移幅值这两种输出参数的变化可实现气体分子的高选择性检测。此外,由于半导体氧化物敏感材料在温度调节下具有可重复使用性,因此本发明CMUT气体传感器除了具有高选择性外,还具有很好的重复性。
-
公开(公告)号:CN110398536A
公开(公告)日:2019-11-01
申请号:CN201910696430.4
申请日:2019-07-30
Applicant: 西安交通大学 , 西安交通大学苏州研究院
IPC: G01N29/02 , G01N29/036
Abstract: 本发明公开了一种多功能薄膜高灵敏度CMUTs气体传感器及其制备方法,本发明采用石墨烯、二硫化钼以及MXenes(二维过渡金属碳化物或氮化物)等同时具有高弹性模量、气体敏感性以及导电性的多功能材料作为CMUTs敏感元件,即单层悬空薄膜同时用作CMUTs振动薄膜、上电极以及敏感材料层,实现了振动薄膜、上电极以及敏感材料层等多层复合薄膜的一体化设计,可有效减小薄膜质量、提高单元一致性以及谐振频率,进而可实现CMUTs气体传感器检测极限及检测灵敏度等综合性能的大幅提高。
-
公开(公告)号:CN113295306B
公开(公告)日:2022-12-30
申请号:CN202110462455.5
申请日:2021-04-27
Applicant: 西安交通大学 , 陕西省计量科学研究院 , 西安航天动力研究所
Inventor: 赵立波 , 李学琛 , 韩香广 , 李伟 , 乔智霞 , 皇咪咪 , 徐廷中 , 杨萍 , 王李 , 陈翠兰 , 王鸿雁 , 关卫军 , 吴永顺 , 罗国希 , 王永录 , 魏于昆 , 山涛 , 蒋庄德
Abstract: 本发明公开了一种压阻梁应力集中微压传感器芯片及其制备方法,传感器芯片包括硅基底和玻璃基底,所述硅基底背面刻蚀有背腔,背腔的底面为承压薄膜,所述承压薄膜正面设置有第一压阻梁、第二压阻梁、第三压阻梁和第四压阻梁;所述第一压阻梁、第二压阻梁、第三压阻梁和第四压阻梁上分别布置有一个压敏电阻条,所述压敏电阻条的长度方向和其所在的压阻梁的长度方向相同,所述压敏电阻条通过金属引线以及金属焊盘连接形成惠斯通电桥。解决了传统梁结构上的压敏电阻条垂直梁结构所在直线布置,因此梁结构的宽度必须大于压敏电阻条的宽度导致梁结构不能做到较窄的问题。
-
公开(公告)号:CN110518114B
公开(公告)日:2021-05-28
申请号:CN201910702717.3
申请日:2019-07-31
Applicant: 西安交通大学
IPC: H01L41/09 , H01L41/314
Abstract: 本发明公开了变频自聚焦混合驱动收发一体化PMUT单元及其制备方法,其将传统CMUT单元的塌陷工作模式与PMUT单元的驱动方式进行结合。在超声发射状态,通过调节偏置电压控制处于振动薄膜塌陷区域与传感器基底的贴合状态,实现对振动薄膜刚度的大范围调控。同时,结合PMUT输出灵敏度不受空腔高度约束的结构设计灵活性,实现PMUT单元的变频高能超声输出。在超声接收状态,通过各个PMUT单元处于塌陷模式下的电容变化量来对入射超声波进行感知,从而极大提高传感器的接收灵敏度。
-
公开(公告)号:CN111644362B
公开(公告)日:2021-03-16
申请号:CN202010537206.3
申请日:2020-06-12
Applicant: 西安交通大学
Abstract: 本发明公开了一种内嵌拱形薄膜驱动的PMUT单元及其制备方法,PMUT单元包括由上至下依次设置的振动薄膜、驱动层和衬底,驱动层包括支撑结构和驱动结构,衬底包括背腔、基底,其中背腔由驱动层和基底围合形成;驱动结构具有水平部分和多个拱形部分,拱形部分记为内嵌拱形驱动膜,内嵌拱形驱动层位于背腔正上方,水平部分下端面和基底上端面相接。该PMUT单元实现在振动薄膜面积相同情况下,提高谐振频率的目的,并使电极以及驱动层被密封在背腔中,与外界接触的只有起振动与支撑作用的振动薄膜,完全隔绝了PMUT芯片敏感元件部分与外界的直接接触,使PMUT更具耐久性。
-
公开(公告)号:CN110508474A
公开(公告)日:2019-11-29
申请号:CN201910702689.5
申请日:2019-07-31
Applicant: 西安交通大学
IPC: B06B1/06
Abstract: 本发明公开了一种混合驱动MUT单元结构及其参数化激励方法,其将传统CMUT单元的塌陷工作模式与PMUT单元的驱动方式进行结合。在超声发射状态,通过施加偏置电压使得振动薄膜处于塌陷状态。同时在塌陷偏置电压基础上叠加周期信号,使得振动薄膜塌陷区域与传感器基底的贴合状态发生周期性变化,实现对振动薄膜弯曲刚度的周期性调控。同时,对其余未贴合部分薄膜,采用PMUT基于逆压电效应的超声发射方法,实现MUT单元在变刚度条件下的振动增幅,实现MUT单元的参数化激励,增加MUT单元的发射灵敏度。
-
公开(公告)号:CN110434044A
公开(公告)日:2019-11-12
申请号:CN201910697282.8
申请日:2019-07-30
IPC: B06B1/02
Abstract: 本发明公开了一种电极形状调控的高超声波收发性能CMUTs。常规CMUTs的上电极为圆形或多边形,至少覆盖悬空薄膜的中心区域;与常规CMUTs的上电极结构不同,本发明CMUTs的中空电极中心区域设置通孔,电极未覆盖悬空薄膜的中心区域。本发明所述中空电极设计可通过静电软化效应减小悬空薄膜中心与固支于支柱区域之间的薄膜区域的刚度,保持薄膜中心区域刚度不变,使得悬空薄膜发生类活塞式振动,从而增大整个悬空薄膜的平均位移,提高超声波的发射强度和接收灵敏度。本发明所提出的中空电极CMUTs解决了常规CMUTs超声发射与接收性能相互制约的问题,能有效实现超声波发射和接收性能的同时提高,且结构与工艺简单,可用于超声生物特征识别、3D超声姿态识别等空气耦合应用领域。
-
公开(公告)号:CN110217753A
公开(公告)日:2019-09-10
申请号:CN201910410680.7
申请日:2019-05-16
Applicant: 西安交通大学
Abstract: 本发明公开了一种高发射功率、低工作电压的通孔式结构超声换能器及其制备方法,通孔式结构超声换能器包括振动薄膜、支柱,绝缘层以及下电极,其中,振动薄膜通过重掺杂形成上电极,其形状尺寸与空腔结构相一致,所述支柱刻蚀有空腔结构,所述空腔结构包括通孔空腔和常规空腔,通孔空腔的存在将传统结构单元中原本独立的常规空腔开通,促使各个单元通过通孔连接,将传统单元原有的周边固支改为四角固支,进而降低刚度,增大静电力作用区域,进而降低工作电压,提高机电耦合系数,增大发射功率以及填充比。
-
-
-
-
-
-
-
-
-