-
公开(公告)号:CN112083482A
公开(公告)日:2020-12-15
申请号:CN202010784646.9
申请日:2020-08-06
申请人: 西安交通大学
摘要: 本发明公开了一种基于模型驱动深度学习的地震超分辨反演方法,包括以下步骤:1)将模型驱动的交替方向乘子法ADMM中的每一次迭代映射到深度网络中的每一层,并利用数学驱动的方法来学习近端映射,完成深度网络ADMM‑SRINet的搭建;2)获取用于训练深度网络ADMM‑SRINet的标签数据;3)利用获取的标签数据对深度网络ADMM‑SRINet进行训练;4)利用步骤3)训练好的深度网络ADMM‑SRINet对待测数据进行反演。该方法结合了基于模型驱动的优化方法和基于数据驱动的深度学习方法的优点,使网络结构具有可解释性;同时,由于物理知识的增加,迭代深度学习方法减轻了对训练集的要求,使反演结果更加可信。
-
公开(公告)号:CN112083482B
公开(公告)日:2021-11-19
申请号:CN202010784646.9
申请日:2020-08-06
申请人: 西安交通大学
摘要: 本发明公开了一种基于模型驱动深度学习的地震超分辨反演方法,包括以下步骤:1)将模型驱动的交替方向乘子法ADMM中的每一次迭代映射到深度网络中的每一层,并利用数学驱动的方法来学习近端映射,完成深度网络ADMM‑SRINet的搭建;2)获取用于训练深度网络ADMM‑SRINet的标签数据;3)利用获取的标签数据对深度网络ADMM‑SRINet进行训练;4)利用步骤3)训练好的深度网络ADMM‑SRINet对待测数据进行反演。该方法结合了基于模型驱动的优化方法和基于数据驱动的深度学习方法的优点,使网络结构具有可解释性;同时,由于物理知识的增加,迭代深度学习方法减轻了对训练集的要求,使反演结果更加可信。
-