基于最近邻分类器和均值漂移的目标跟踪方法

    公开(公告)号:CN102999920B

    公开(公告)日:2015-02-18

    申请号:CN201210414788.1

    申请日:2012-10-25

    Abstract: 本发明公开一种基于最近邻分类器和均值漂移的目标跟踪方法,主要解决现有技术中由于目标运动模糊无法捕获特征点和跟踪漂移无法恢复而导致的跟踪失败问题。其实现步骤为:(1)输入视频的第一帧,并用矩形框标记出待跟踪目标;(2)对目标模型初始化;(3)确定新一帧视频图像中目标搜索区域;(4)提取搜索区域内的尺度不变sift特征与目标模型匹配,同时用均值漂移模型跟踪目标;(5)对步骤(4)的结果进行决策级融合作为目标跟踪结果输出;(6)更新没有发生遮挡的目标模型;(7)循环执行步骤(3)~步骤(6),直至视频结束。本发明与现有技术相比在目标快速运动甚至出现运动模糊或者发生遮挡情况下提高了目标跟踪的准确性。

    基于最近邻分类器和均值漂移的目标跟踪方法

    公开(公告)号:CN102999920A

    公开(公告)日:2013-03-27

    申请号:CN201210414788.1

    申请日:2012-10-25

    Abstract: 本发明公开一种基于最近邻分类器和均值漂移的目标跟踪方法,主要解决现有技术中由于目标运动模糊无法捕获特征点和跟踪漂移无法恢复而导致的跟踪失败问题。其实现步骤为:(1)输入视频的第一帧,并用矩形框标记出待跟踪目标;(2)对目标模型初始化;(3)确定新一帧视频图像中目标搜索区域;(4)提取搜索区域内的尺度不变sift特征与目标模型匹配,同时用均值漂移模型跟踪目标;(5)对步骤(4)的结果进行决策级融合作为目标跟踪结果输出;(6)更新没有发生遮挡的目标模型;(7)循环执行步骤(3)~步骤(6),直至视频结束。本发明与现有技术相比在目标快速运动甚至出现运动模糊或者发生遮挡情况下提高了目标跟踪的准确性。

    基于小波描述子的目标跟踪方法

    公开(公告)号:CN103778641B

    公开(公告)日:2016-08-03

    申请号:CN201210414785.8

    申请日:2012-10-25

    Abstract: 本发明公开一种基于小波描述子的目标跟踪方法,主要解决现有技术中由于目标发生遮挡或者快速变化而导致目标跟踪失败的问题。其实现步骤为:(1)输入一段视频的第一帧,并人工标记出待跟踪的目标;(2)建立目标模板;(3)计算目标的颜色直方图;(4)在新一帧视频图像的搜索区域中提取小波特征;(5)求与目标模板距离的局部极小值;(6)计算目标的颜色直方图;(7)判断目标是否被遮挡,并在部分遮挡情况下对提取出的角点特征进行跟踪,在全遮挡情况下利用运动估计实现目标跟踪;(8)循环执行步骤(4)~步骤(7),直至视频结束。本发明与现有的技术相比在目标发生遮挡或者快速变化情况下提高了目标跟踪的鲁棒性。

    基于小波描述子的目标跟踪方法

    公开(公告)号:CN103778641A

    公开(公告)日:2014-05-07

    申请号:CN201210414785.8

    申请日:2012-10-25

    Abstract: 本发明公开一种基于小波描述子的目标跟踪方法,主要解决现有技术中由于目标发生遮挡或者快速变化而导致目标跟踪失败的问题。其实现步骤为:(1)输入一段视频的第一帧,并人工标记出待跟踪的目标;(2)建立目标模板;(3)计算目标的颜色直方图;(4)在新一帧视频图像的搜索区域中提取小波特征;(5)求与目标模板距离的局部极小值;(6)计算目标的颜色直方图;(7)判断目标是否被遮挡,并在部分遮挡情况下对提取出的角点特征进行跟踪,在全遮挡情况下利用运动估计实现目标跟踪;(8)循环执行步骤(4)~步骤(7),直至视频结束。本发明与现有的技术相比在目标发生遮挡或者快速变化情况下提高了目标跟踪的鲁棒性。

    基于学习和加速鲁棒SURF特征的目标跟踪方法

    公开(公告)号:CN102945554A

    公开(公告)日:2013-02-27

    申请号:CN201210415033.3

    申请日:2012-10-25

    Abstract: 本发明公开一种基于学习和加速鲁棒SURF特征的目标跟踪方法,主要解决现有技术中由于目标快速变化或者发生遮挡而导致目标跟踪失败的问题。其实现步骤为:(1)输入一段视频中的第一帧,并人工标记出待跟踪目标,同时将标记的目标作为目标模板;(2)通过跟踪-在线学习-检测模型跟踪目标;(3)判定跟踪与检测目标的结果;(4)提取目标模板和视频当前帧的加速鲁棒SURF特征;(5)利用欧氏距离对获得的加速鲁棒SURF特征进行匹配;(6)输出目标跟踪结果,更新目标模板;(7)循环执行步骤(2)~步骤(6),直到视频结束。本发明与现有的技术相比在目标快速变化或者发生遮挡情况下提高了目标跟踪的鲁棒性。

    基于学习和加速鲁棒SURF特征的目标跟踪方法

    公开(公告)号:CN102945554B

    公开(公告)日:2015-04-22

    申请号:CN201210415033.3

    申请日:2012-10-25

    Abstract: 本发明公开一种基于学习和加速鲁棒SURF特征的目标跟踪方法,主要解决现有技术中由于目标快速变化或者发生遮挡而导致目标跟踪失败的问题。其实现步骤为:(1)输入一段视频中的第一帧,并人工标记出待跟踪目标,同时将标记的目标作为目标模板;(2)通过跟踪-在线学习-检测模型跟踪目标;(3)判定跟踪与检测目标的结果;(4)提取目标模板和视频当前帧的加速鲁棒SURF特征;(5)利用欧氏距离对获得的加速鲁棒SURF特征进行匹配;(6)输出目标跟踪结果,更新目标模板;(7)循环执行步骤(2)~步骤(6),直到视频结束。本发明与现有的技术相比在目标快速变化或者发生遮挡情况下提高了目标跟踪的鲁棒性。

Patent Agency Ranking