-
公开(公告)号:CN112712050B
公开(公告)日:2023-05-16
申请号:CN202110032928.8
申请日:2021-01-12
申请人: 西安电子科技大学
IPC分类号: G06V20/10 , G06V10/44 , G06V10/762 , G06V10/764 , G06N3/047 , G06N3/048 , G06N3/08 , G06V10/82
摘要: 本发明公开了一种基于DS证据融合的极化SAR图像语义变化检测方法,主要解决现有技术无法进行语义级变化检测及边缘定位差的问题。其方案为:输入两时相极化SAR图像及真实语义变化图;在两时相图像上生成训练集和测试集;构造卷积神经网络,并用训练集训练;测试集通过训练好网络得到语义变化特征,并将其输入到分类器中得到语义变化概率;通过差异算子生成两时相差异图,并对其初始化标记场;在标记场上通过马尔可夫随机场建模得到最终标记场,计算其变化概率,并将该变化概率与语义变化概率进行融合,得到语义变化检测结果。本发明实现了语义级变化检测,增强了变化边缘的定位,增强了对噪声的鲁棒性,可用于极化SAR图像目标识别。
-
公开(公告)号:CN112712050A
公开(公告)日:2021-04-27
申请号:CN202110032928.8
申请日:2021-01-12
申请人: 西安电子科技大学
摘要: 本发明公开了一种基于DS证据融合的极化SAR图像语义变化检测方法,主要解决现有技术无法进行语义级变化检测及边缘定位差的问题。其方案为:输入两时相极化SAR图像及真实语义变化图;在两时相图像上生成训练集和测试集;构造卷积神经网络,并用训练集训练;测试集通过训练好网络得到语义变化特征,并将其输入到分类器中得到语义变化概率;通过差异算子生成两时相差异图,并对其初始化标记场;在标记场上通过马尔可夫随机场建模得到最终标记场,计算其变化概率,并将该变化概率与语义变化概率进行融合,得到语义变化检测结果。本发明实现了语义级变化检测,增强了变化边缘的定位,增强了对噪声的鲁棒性,可用于极化SAR图像目标识别。
-