-
公开(公告)号:CN108805839A
公开(公告)日:2018-11-13
申请号:CN201810583489.8
申请日:2018-06-08
申请人: 西安电子科技大学
IPC分类号: G06T5/00
CPC分类号: G06T5/003 , G06T2207/20081 , G06T2207/20084
摘要: 本发明公开了一种单幅图像去雾方法,主要解决现有技术非线性拟合能力受约束和训练繁琐以及适用场景单一的问题。其方案是:在Caffe框架下构建由特征共享部分以及雾图大气光值估计分支和透射率估计分支组成的卷积神经网络;获取一组无雾图像集J,对J进行人工加雾得到有雾图像集I;将I、J按批量大小分别平分为多个配对的图像组,并依次循环输入200000次至神经网络进行训练;将需要去雾的图像I输入至训练完成的神经网络,输出大气光值A和透射率T;根据大气光值A和透射率T计算得到无雾图像Jc。本发明能很好的保持恢复图像的对比度和色彩饱和度,其峰值信噪比和结构相似性两个指标均优于现有技术,可用于有雾图像的清晰化处理。
-
公开(公告)号:CN109584170A
公开(公告)日:2019-04-05
申请号:CN201811271076.2
申请日:2018-10-29
申请人: 西安电子科技大学
IPC分类号: G06T5/00
摘要: 本发明公开了一种单幅水下图像复原方法,主要解决现有技术在处理水下图像时色偏校正和清晰化处理效果欠佳的问题。其方案是:在Caffe框架下分别构建环境光估计网络和透射率估计网络;获取一组深度图像集J和d(J),随机生成透射率T和环境光A,合成水下图像集I;将I、A按批量依次循环输入至环境光估计网络进行训练;再将I、T按批量依次循环输入至透射率估计网络进行训练;将待处理的图像Ic输入至完成训练的神经网络,输出环境光Ac和透射率Tc;根据Ac和Tc计算得到清晰图像Jc。本发明提高了图像对比度并能校正色偏,其峰值信噪比、结构相似性和色差公式三个指标均优于现有技术,可用于水下图像的清晰化处理。
-
公开(公告)号:CN109584170B
公开(公告)日:2022-12-27
申请号:CN201811271076.2
申请日:2018-10-29
申请人: 西安电子科技大学
IPC分类号: G06T5/00
摘要: 本发明公开了一种单幅水下图像复原方法,主要解决现有技术在处理水下图像时色偏校正和清晰化处理效果欠佳的问题。其方案是:在Caffe框架下分别构建环境光估计网络和透射率估计网络;获取一组深度图像集J和d(J),随机生成透射率T和环境光A,合成水下图像集I;将I、A按批量依次循环输入至环境光估计网络进行训练;再将I、T按批量依次循环输入至透射率估计网络进行训练;将待处理的图像Ic输入至完成训练的神经网络,输出环境光Ac和透射率Tc;根据Ac和Tc计算得到清晰图像Jc。本发明提高了图像对比度并能校正色偏,其峰值信噪比、结构相似性和色差公式三个指标均优于现有技术,可用于水下图像的清晰化处理。
-
-