-
公开(公告)号:CN118751208A
公开(公告)日:2024-10-11
申请号:CN202410907514.9
申请日:2024-07-08
申请人: 郑州中科新兴产业技术研究院 , 龙子湖新能源实验室 , 中国科学院过程工程研究所
摘要: 本发明提出了一种离子液体改性的有机气体吸附材料及其制备方法和应用,属于气体分离与净化的技术领域,用以解决低浓度含氯有机物的分压低、传质动力小、捕集难的问题的技术问题。本发明有机气体吸附材料的制备方法包括以下步骤:将离子液体与有机溶剂混合配制浸渍液;将分子筛加入到浸渍液中,采用超声辅助溶剂热法进行负载,反应结束后加热浸渍液将有机溶剂蒸发,最后进行干燥。本发明离子液体高度分布在SBA‑15表面,形成含氯有机物选择吸附层,同时通过调控离子液体的负载量,使离子液体在SBA‑15的孔道内部设计和构筑新型微孔,甚至形成独特的超微孔,离子液体与含氯有机物的多重氢键及卤键作用与微孔‑超微孔结构的耦合效应,可协同强化低浓度含氯有机物的捕集。所述吸附材料原料丰富易得,合成过程简单,便于规模化制备,且对低浓度含氯有机物的吸附容量高、稳定性好等优点,在低浓度含氯有机物捕集和净化分离方面应用潜力巨大。
-
公开(公告)号:CN117619157A
公开(公告)日:2024-03-01
申请号:CN202311850744.8
申请日:2023-12-29
申请人: 郑州中科新兴产业技术研究院 , 龙子湖新能源实验室
摘要: 本发明提出了一种二维限域离子液体异质复合膜及其制备方法和应用,属于可再生能源利用的技术领域。本发明制备方法为:将二维纳米片分散在溶剂中,配制二维纳米片分散液;通过抽滤方法将二维纳米片分散液抽滤在多孔基底上,制得二维纳米片组装膜;在二维纳米片组装膜的表面涂覆离子液体溶液,离子液体限域在二维纳米片组装膜中形成二维限域离子液体复合膜,并在上方形成离子液体层;在多孔基底远离离子液体层的一面涂覆亲水性高分子溶液,制得亲水层,得到二维限域离子液体异质复合膜。本发明所制备的异质复合膜有不同的功能层,还通过功能层设计拓宽了材料的应用范围,具有很好的环境适应性,在未来通过湿气发电技术中有很大的应用潜力。
-
公开(公告)号:CN118183694A
公开(公告)日:2024-06-14
申请号:CN202410310448.7
申请日:2024-03-19
申请人: 龙子湖新能源实验室 , 郑州中科新兴产业技术研究院
IPC分类号: C01B32/05 , H01M4/587 , H01M10/0525 , H01M10/054
摘要: 本发明公开了一种高比容量氧/硫共掺杂沥青衍生碳微球负极材料及其制备方法和应用,制备方法为:将十二烷基苯磺酸钠和硅油加入到反应釜中搅拌均匀;然后将沥青进行破碎,得到粒径大小为5~20μm的沥青粉末;将得到的乳液与破碎后的沥青粉末一起放入反应釜中搅拌加热,并将混合空气通入乳液底部鼓泡进行氧化,多次洗涤并烘干;最后将黑色粉末和硫助剂混合均匀并在氮气氛围下碳化,制得钠离子电池高比容量氧/硫共掺杂沥青衍生碳微球负极材料。本发明制备方法通过二次分子交联方式制备氧/硫共掺杂沥青衍生碳微球,在氧交联的辅助下轻松实现球状结构,在硫交联的作用下,实现储钠性能的提升,有利于工业化的大规模生成和应用。
-
公开(公告)号:CN116444346A
公开(公告)日:2023-07-18
申请号:CN202310455422.7
申请日:2023-04-25
申请人: 郑州中科新兴产业技术研究院 , 龙子湖新能源实验室
摘要: 本发明提出了一种负载型离子液体催化合成双酚类化合物的方法,属于双酚类化合物合成的技术领域,用以解决传统无机酸做为催化剂使用时腐蚀设备、产物选择性低的技术问题。所述双酚类化合物制备方法为:在负载型离子液体催化剂和巯基化合物助催化剂的催化作用下,羰基化合物和酚类化合物经缩合反应制备双酚类化合物。所述负载型离子液体催化剂包括载体和负载物,负载物为离子液体。本申请所合成的负载型离子液体催化剂具有催化性能优异,热稳定性好,可回收等优点,在重复使用该催化剂达到10次时,羰基化合物的转化率和双酚类化合物的选择性均能够保持在90%以上。
-
公开(公告)号:CN118085912A
公开(公告)日:2024-05-28
申请号:CN202410112999.2
申请日:2024-01-26
申请人: 龙子湖新能源实验室 , 郑州中科新兴产业技术研究院
IPC分类号: C10C3/04 , C10C3/02 , C10C3/06 , C10C3/08 , H01M4/36 , H01M4/583 , H01M10/0525 , C08J3/24 , C08L95/00
摘要: 本发明涉及锂电池负极材料技术领域,具体涉及一种梯度氧化交联聚合制备包覆沥青的方法和应用。首先对原料沥青进行提纯处理得到精制沥青,然后将精制沥青加入反应釜中进行两级梯度氧化交联聚合处理,向反应釜底部持续通入氧化交联气体,在含氧催化剂的存在下,进行一级低温氧化交联预聚合得到预聚合物料,接着进行二级高温氧化交联深度聚合后得到高软点包覆沥青。本发明通过梯度氧化交联聚合处理,制备的包覆沥青具有各向同性和高软化点的特性,可满足锂离子电池负极材料用高软化点包覆沥青应用场景需求。
-
公开(公告)号:CN118834119A
公开(公告)日:2024-10-25
申请号:CN202410808291.0
申请日:2024-06-21
申请人: 郑州中科新兴产业技术研究院 , 龙子湖新能源实验室
摘要: 本发明提出了一种负载型离子液体催化合成双酚类化合物的方法,属于双酚类化合物合成的技术领域,用以解决传统无机酸做为催化剂使用时腐蚀设备、产物选择性低的技术问题。所述双酚类化合物制备方法为:在负载型离子液体催化剂和巯基化合物助催化剂的催化作用下,羰基化合物和酚类化合物经缩合反应制备双酚类化合物。所述负载型离子液体催化剂包括载体和负载物,负载物为离子液体。本申请所合成的负载型离子液体催化剂具有催化性能优异,热稳定性好,可回收等优点,在重复使用该催化剂达到10次时,羰基化合物的转化率和双酚类化合物的选择性均能够保持在90%以上。
-
公开(公告)号:CN117673325A
公开(公告)日:2024-03-08
申请号:CN202311835969.6
申请日:2023-12-28
申请人: 郑州中科新兴产业技术研究院 , 龙子湖新能源实验室
IPC分类号: H01M4/36 , H01M10/0525 , H01M10/054
摘要: 本发明公开了一种高比容量氧/硫共掺杂多孔碳负极材料及其制备方法和应用,制备方法为:将沥青和硫助剂放入反应釜中,充入一定压力的氧气和氮气混合气体后,进行热搅拌氧/硫共掺杂聚合反应,得到改性聚合沥青;将上述改性聚合沥青和微米级熔盐模板进行研磨混合后,在氮气保护下炭化处理,冷却后用去离子水洗涤,过滤真空干燥获得钠离子电池用高比容量氧/硫共掺杂多孔碳负极材料,所制备氧/硫共掺杂碳负极材料具有超薄碳纳米片组成的蜂窝状多孔框架,以及较高边缘杂原子掺杂含量,本发明制备方法工艺流程简便,用于钠离子电池负极展现了高比容量和优良倍率和循环性能。
-
公开(公告)号:CN116444345A
公开(公告)日:2023-07-18
申请号:CN202310455418.0
申请日:2023-04-25
申请人: 郑州中科新兴产业技术研究院 , 龙子湖新能源实验室
摘要: 本发明提出了一种利用磺酸型离子液体催化制备芴基二元醇的方法,属于催化、有机合成的技术领域,用以解决传统硫酸法腐蚀性强、污染大及选择性低的技术问题。所述方法包括:将芴酮衍生物与芳基化合物混合后,加入助催化剂巯基化合物。在一定温度反应至底物溶解后,加入磺酸型离子液体催化剂,继续反应一定时间,得到了芴基二元醇,芴酮衍生物的转化率最高可达100%,芴基二元醇的产率最高可达99%,选择性最高可达99%。本发明所述方法避免了传统强酸催化剂的使用,所用催化剂磺酸型离子液体的特征在于催化活性高,可循环使用,不易挥发,绿色环保。
-
公开(公告)号:CN118930916A
公开(公告)日:2024-11-12
申请号:CN202411063613.X
申请日:2024-08-05
申请人: 中国科学院过程工程研究所 , 龙子湖新能源实验室
摘要: 本发明公开了一种温和条件下离子液体溶解纤维素及制备再生纤维素纤维或薄膜的方法。该方法包含以下步骤:(1)将洗涤干燥后的纤维素与亚磷酸酯类离子液体水溶液按一定比例加入反应釜中,在室温下溶胀;(2)在一定温度下边脱泡边溶解,将所得离子液体‑纤维素溶液过滤后,采用干喷‑湿法纺丝工艺制备再生纤维素纤维,或采用流延法制备再生纤维素薄膜;(3)对凝固浴的离子液体进行回收再利用。本方法工艺简单,溶解纤维素条件温和,环境友好,所制备的再生纤维素纤维和薄膜具备优异的机械性。为离子液体溶解纤维素制备纤维素纤维或薄膜工艺提供了一种温和溶解的新方法。
-
公开(公告)号:CN118685895A
公开(公告)日:2024-09-24
申请号:CN202410949667.X
申请日:2024-07-16
申请人: 中国科学院过程工程研究所 , 龙子湖新能源实验室
IPC分类号: D01F9/16
摘要: 本发明公开了一种再生纤维素基碳纤维材料的制备方法,系该方法包括以下步骤:首先,使用离子液体为溶剂溶解纤维素,通过牵伸水洗等工序得到的再生纤维素纤维原丝并进行干燥处理。然后,对干燥后的原丝进行低温预氧化处理,得到预氧化再生纤维素纤维;对所述预氧化再生纤维素纤维进行低温碳化处理,随后进行高温碳化,最终得到再生纤维素基碳纤维。整个过程中,根据再生纤维素纤维原丝的失重曲线,控制不同温度下的预氧化、低温碳化和高温碳化过程中的升温速率和反应气氛。本发明的方法制备的再生纤维素基碳纤维材料具有较高的伸长率1.2%~11.31%,提高了碳收率20%~25.7%,并且优化了生产过程的控制精度和效率。
-
-
-
-
-
-
-
-
-