一种基于实例分割算法的路面裂缝像素级别检测方法

    公开(公告)号:CN112258529A

    公开(公告)日:2021-01-22

    申请号:CN202011205186.6

    申请日:2020-11-02

    IPC分类号: G06T7/11 G06T7/194 G06T7/00

    摘要: 本发明适用于路面病害智能分割技术领域,涉及一种基于实例分割算法的路面裂缝像素级别检测方法,包括以下步骤:采集路面病害图像数据;对采集的路面病害图像数据进行预处理,构建用于训练神经网络的路面病害数据库;对实例分割算法Mask R‑CNN进行改进优化,从而构建像素级别的路面裂缝智能分割模型,并初始化智能分割模型进行训练;调整智能分割模型的超参数,直至智能分割模型收敛且误差损失值满足要求,则保存此时的网络权重参数,用于路面裂缝像素级别的分割;将测试图像输入到保存的智能分割模型中,输出路面裂缝分割结果。本发明所提出的智能分割模型具有更好的鲁棒性与泛化能力,有效提高路面裂缝的分割精度与效率。

    一种基于候选区域网络和机器视觉的道路病害检测方法

    公开(公告)号:CN112200143A

    公开(公告)日:2021-01-08

    申请号:CN202011205113.7

    申请日:2020-11-02

    摘要: 本发明适用于深度学习与道路工程技术领域,涉及一种基于候选区域网络和机器视觉的道路病害检测方法,包括:获取路面病害数据集;分类标注病害并分为训练集、验证集和测试集;搭载卷积神经网络模型,将训练集导入模型,进行模型训练;设置不同的超参数,引入验证集图片测试寻找最优超参数;引入测试集图片到最优模型,对模型进行测试;使用检测车进行拍摄并判断检测效率及准确率能否达到所需要求。本发明采用深度学习的方法,研发适用于道路病害特征的目标检测算法,基于道路病害大数据进行模型训练,提高了模型的鲁棒性和泛化能力;同时通过优化基础残差卷积神经网络和候选区域建议网络,提高了模型检测的准确度,实现了路面病害的自动识别。