-
公开(公告)号:CN112990344B
公开(公告)日:2022-05-24
申请号:CN202110381357.9
申请日:2021-04-09
Applicant: 重庆大学
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V10/44 , G06K9/62 , G06T7/00
Abstract: 本发明涉及一种肺结节多视图分类方法。包括:从公开数据集中选择一样本;建立多视图网络结构模型,步骤为:S1:利用卷积函数提取该图片上肺结节图像的初步特征;S2:利用初步特征和Sobel边缘检测算子计算该图像的边缘特征;S3:通过边缘特征计算特征向量,建立模型,使用特征向量集合得到肺结节预测结果和边缘特征吻合度得分;S4:使用训练集对模型进行训练,通过计算损失函数并反向传播的方式更新模型参数,最终得到训练好的多视图网络结构模型;将待预测肺结节图像作为已训练好的模型的输入,计算得到该肺结节的分类结果。本发明使用多视图和传统方法来补充现有辅助分类结构中存在的不足,使得肺结节辅助分类更加的准确。
-
公开(公告)号:CN112990344A
公开(公告)日:2021-06-18
申请号:CN202110381357.9
申请日:2021-04-09
Applicant: 重庆大学
Abstract: 本发明涉及一种肺结节多视图分类方法。包括:从公开数据集中选择一样本;建立多视图网络结构模型,步骤为:S1:利用卷积函数提取该图片上肺结节图像的初步特征;S2:利用初步特征和Sobel边缘检测算子计算该图像的边缘特征;S3:通过边缘特征计算特征向量,建立模型,使用特征向量集合得到肺结节预测结果和边缘特征吻合度得分;S4:使用训练集对模型进行训练,通过计算损失函数并反向传播的方式更新模型参数,最终得到训练好的多视图网络结构模型;将待预测肺结节图像作为已训练好的模型的输入,计算得到该肺结节的分类结果。本发明使用多视图和传统方法来补充现有辅助分类结构中存在的不足,使得肺结节辅助分类更加的准确。
-