一种基于Attention机制和卷积神经网络的快速商标图像检索方法

    公开(公告)号:CN108875076A

    公开(公告)日:2018-11-23

    申请号:CN201810750096.1

    申请日:2018-07-10

    Abstract: 本发明公开了一种基于Attention机制和卷积神经网络的快速商标图像检索方法,包括搭建Caffe深度学习开源框架,对开源VGG16网络模型进行训练;基于VGG16网络模型设计包含两层卷积层的Attention网络,并在训练好的VGG16网络模型中添加Attention网络;使用FlickrLogos‑32数据集中的训练集对添加了Attention网络的VGG16网络模型进行训练;基于训练好的添加了Attention网络的VGG16网络模型生成Attention‑MAC商标特征提取模型;基于Attention‑MAC商标特征提取模型对待查询商标图像进行检索,并生成检索结果。本发明避免使用全连接层冗余的参数,达到精简模型的目的,提高训练和检索的速度,降低误检率。

    一种融合Faster-RCNN和Wasserstein自编码器的图像检索方法

    公开(公告)号:CN109086437B

    公开(公告)日:2021-06-01

    申请号:CN201810926656.4

    申请日:2018-08-15

    Abstract: 本发明公开一种融合Faster‑RCNN(Faster‑Regions with Convolutional Neural Network,快速区域卷积神经网络)和Wasserstein自编码器的图像检索方法。本发明搭建深度学习框架,采用Faster‑RCNN模型提取图像特征;对Faster‑RCNN模型进行训练,微调网络权重;提取图像的全局特征,构建图像的全局特征图库;构建Wasserstein自编码器,并对Wasserstein自编码器进行训练;采用Wasserstein自编码器对全局特征进行降维,计算欧几里得距离得出第一相似度,并进行第一次排序,完成图像的粗粒度检索;提取图像中候选区域的特征作为局部特征,构建图像的局部特征图库;采用Wasserstein自编码器对局部特征进行降维,计算第二相似度并进行第二次排序,完成图像的细粒度检索。该方法能加快图像的检索速度以及提高图像检索的准确率。

    一种基于Attention机制和卷积神经网络的快速商标图像检索方法

    公开(公告)号:CN108875076B

    公开(公告)日:2021-07-20

    申请号:CN201810750096.1

    申请日:2018-07-10

    Abstract: 本发明公开了一种基于Attention机制和卷积神经网络的快速商标图像检索方法,包括搭建Caffe深度学习开源框架,对开源VGG16网络模型进行训练;基于VGG16网络模型设计包含两层卷积层的Attention网络,并在训练好的VGG16网络模型中添加Attention网络;使用FlickrLogos‑32数据集中的训练集对添加了Attention网络的VGG16网络模型进行训练;基于训练好的添加了Attention网络的VGG16网络模型生成Attention‑MAC商标特征提取模型;基于Attention‑MAC商标特征提取模型对待查询商标图像进行检索,并生成检索结果。本发明避免使用全连接层冗余的参数,达到精简模型的目的,提高训练和检索的速度,降低误检率。

    一种融合Faster-RCNN和Wasserstein自编码器的图像检索方法

    公开(公告)号:CN109086437A

    公开(公告)日:2018-12-25

    申请号:CN201810926656.4

    申请日:2018-08-15

    Abstract: 本发明公开一种融合Faster-RCNN(Faster-Regions with Convolutional Neural Network,快速区域卷积神经网络)和Wasserstein自编码器的图像检索方法。本发明搭建深度学习框架,采用Faster-RCNN模型提取图像特征;对Faster-RCNN模型进行训练,微调网络权重;提取图像的全局特征,构建图像的全局特征图库;构建Wasserstein自编码器,并对Wasserstein自编码器进行训练;采用Wasserstein自编码器对全局特征进行降维,计算欧几里得距离得出第一相似度,并进行第一次排序,完成图像的粗粒度检索;提取图像中候选区域的特征作为局部特征,构建图像的局部特征图库;采用Wasserstein自编码器对局部特征进行降维,计算第二相似度并进行第二次排序,完成图像的细粒度检索。该方法能加快图像的检索速度以及提高图像检索的准确率。

Patent Agency Ranking