-
公开(公告)号:CN117058903B
公开(公告)日:2024-10-29
申请号:CN202311024071.0
申请日:2023-08-15
申请人: 重庆邮电大学
IPC分类号: G08G1/0967 , G06Q10/0639 , G06N3/092 , G06N3/084 , G06N20/00 , H04W4/44 , H04L67/12 , H04L9/00
摘要: 本发明涉及一种智能网联汽车安全数据协同方法,属于移动通信技术领域。所述方法包括接收来自路边单元的Tip交易,并从中选择质量指标最高的两个驾驶策略模型进行聚合;根据感知的当前道路环境,进行本地决策,得到相应的多目标奖励,并将决策相关信息作为经验存储到经验回放区;根据预设优先级对经验回放区的经验进行采样,根据训练样本更新驾驶策略模型,并根据经验回放区最新的多组训练样本获得的奖励,计算驾驶测量模型的质量指标;将满足质量要求的驾驶策略模型结合更新后的质量指标进行打包,生成新Tip交易;发送新Tip交易至路边单元。本发明在保证智能网联汽车数据安全性的同时,有效提升自动驾驶决策的准确性、安全性和舒适性。
-
公开(公告)号:CN117135597A
公开(公告)日:2023-11-28
申请号:CN202311088483.0
申请日:2023-08-28
申请人: 重庆邮电大学
摘要: 本发明涉及一种基于分布式学习的智能网联汽车低时延数据共享方法,属于移动通信技术领域。所述方法包括获取来自路边单元下发的全局模型;所述全局模型由学生模型和全局聚合权重聚合得到;采集车辆数据,在本地训练全局模型对应的学生模型和教师模型;向路边单元上传学生模型,以及基于教师模型确定的全局聚合权重;若全局模型与学生模型的偏差程度超过预设阈值,则向路边单元的数据缓冲区上传部分车辆数据;获取来自路边单元下发的共享数据,在本地修正所述全局模型对应的学生模型和教师模型;所述共享数据由上传的部分车辆数据的新旧比例以及重要模型参数的变化率确定。在本申请的实施例所提供的技术方案中,能够显著提升模型的精度。
-
公开(公告)号:CN117058903A
公开(公告)日:2023-11-14
申请号:CN202311024071.0
申请日:2023-08-15
申请人: 重庆邮电大学
IPC分类号: G08G1/0967 , G06Q10/0639 , G06N3/092 , G06N3/084 , G06N20/00 , H04W4/44 , H04L67/12 , H04L9/00
摘要: 本发明涉及一种智能网联汽车安全数据协同方法,属于移动通信技术领域。所述方法包括接收来自路边单元的Tip交易,并从中选择质量指标最高的两个驾驶策略模型进行聚合;根据感知的当前道路环境,进行本地决策,得到相应的多目标奖励,并将决策相关信息作为经验存储到经验回放区;根据预设优先级对经验回放区的经验进行采样,根据训练样本更新驾驶策略模型,并根据经验回放区最新的多组训练样本获得的奖励,计算驾驶测量模型的质量指标;将满足质量要求的驾驶策略模型结合更新后的质量指标进行打包,生成新Tip交易;发送新Tip交易至路边单元。本发明在保证智能网联汽车数据安全性的同时,有效提升自动驾驶决策的准确性、安全性和舒适性。
-
-