一种基于多任务学习模型的AI换脸视频检测方法

    公开(公告)号:CN111950497A

    公开(公告)日:2020-11-17

    申请号:CN202010844086.1

    申请日:2020-08-20

    摘要: 本发明请求保护一种基于多任务学习模型的AI换脸视频检测方法,属于计算机视觉与深度学习领域,包括以下步骤:预先训练基于多任务学习的模型来检测被修改的换脸视频,并为每个查询定位修改的区域,此模型为自动编码器包括一个Y型自动解码器。利用半监督学习方法来提高网络的生成性,利用多任务之前共享有价值的信息,减少激活损失函数、分割损失函数和重建损失函数的总和,并使用优化器进行优化,进而提高性能。对于视频输入检测,对所有帧的概率进行求平均,得出输入为真或假的概率。本发明有利提高AI换脸视频检测。

    一种基于多任务学习模型的AI换脸视频检测方法

    公开(公告)号:CN111950497B

    公开(公告)日:2022-07-01

    申请号:CN202010844086.1

    申请日:2020-08-20

    摘要: 本发明请求保护一种基于多任务学习模型的AI换脸视频检测方法,属于计算机视觉与深度学习领域,包括以下步骤:预先训练基于多任务学习的模型来检测被修改的换脸视频,并为每个查询定位修改的区域,此模型为自动编码器包括一个Y型自动解码器。利用半监督学习方法来提高网络的生成性,利用多任务之前共享有价值的信息,减少激活损失函数、分割损失函数和重建损失函数的总和,并使用优化器进行优化,进而提高性能。对于视频输入检测,对所有帧的概率进行求平均,得出输入为真或假的概率。本发明有利提高AI换脸视频检测。