摘要:
The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, 0.005 to 1.0% of Cr, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
摘要翻译:本发明涉及具有高强度,高导电率和优异的弯曲性的铜合金,所述铜合金以质量%计含有0.4〜4.0%的Ni; ,Si:0.05〜1.0% 作为元素M,含有Cr:0.005〜1.0%,余量为铜和不可避免的杂质,其中,50〜200nm的析出物中含有的元素M和Si的原子数比M / Si 铜合金的微观结构平均为0.01〜10,原子数比是通过场放射透射电子显微镜以30,000倍的放大率和能量色散分析仪测量的。 根据本发明,可以提供具有高强度,高导电性和优异弯曲性的铜合金。
摘要:
The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, 0.005 to 1.0% of Cr, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
摘要:
The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
摘要:
The present invention provides a Cu-Fe-P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.
摘要:
The present invention relates to a copper alloy having a high strength and superior bending workability, respectively containing 0.01 to 3.0% by mass of Fe, 0.01 to 0.4% by mass of P and 0.1 to 1.0% by mass of Mg, and remainder Cu and unavoidable impurities, wherein in the grain size measured by a crystal orientation analysis method in which an electron back scattering pattern system is mounted on a field emission scanning electron microscope, the mean grain size described below is 6.5 m or less, and the standard deviation of the mean grain size described below is 1.5 m or less: wherein when n indicates the number of crystal grains measured and x indicates the grain size values measured, the mean grain size is expressed as (Σx)/n, and the standard deviation of the mean grain size is expressed as [nΣx 2 - (Σx) 2 ] / [n/(n-1) 1/2 ].
摘要:
Disclosed is a pure titanium sheet having a strength corresponding to JIS Grade 2 level (215 MPa in terms of 0.2% yield strength) or more and having satisfactory stamping formability. The pure titanium sheet includes titanium and inevitable impurities, has a 0.2% yield strength of 215 MPa or more, has an average grain size d of its structure of 25 μm or more and 75 μm or less, and has a hexagonal crystal structure, in which respective grains in the hexagonal crystal structure have an average of Schmidt factors (SF) of (11-22) twins with a rolling direction as axes, and the average Schmidt factor (SF) and the average grain size d satisfy following Expression (1): 0.055 ≤ SF / √d ≤ 0.084
摘要:
The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.