摘要:
The present invention provides an olefin polymer in which LCB (long chain branch) is introduced into mLLDPE (metallocene linear low-density polyethylene) to control the storage modulus, whereby the olefin polymer has excellent bubble stability and processing load characteristics and exhibits excellent processability during preparation of a film, and further has excellent mechanical properties and transparency.
摘要:
The present invention relates to a preparation method of a highly active supported metallocene catalyst which can prepare a polyolefin of high bulk density. More specifically, the present invention provides a method of preparing the supported metallocene catalyst in which one or more metallocene catalysts are loaded on the silica carrier of which the inside is penetrated by more cocatalyst than the prior art and the outside is attached with a substantial amount of the cocatalyst. The catalyst according to the present invention can prepare a polyolefin polymer with improved bulk density and efficiency while maintaining its highly active catalytic characteristic.
摘要:
The present disclosure provides a polyolefin-based film including an olefin polymer which is controlled in the content of the branched polymer structure in the polymer and the weight average molecular weight of the main chain in the structure to exhibit excellent processability and transparency. Therefore, the polyolefin-based film not only exhibits high transparency independent of processing conditions, but also reduces the increase in film haze even when the thickness of the film increases.
摘要:
The present disclosure provides a supported hybrid catalyst which facilitates the preparation of polyolefins having improved bubble stability and exhibiting excellent processability for a blown film while maintaining high transparent haze and improved melt strength, and a method for preparing the same.
摘要:
The present disclosure relates to a method for preparing a supported hybrid metallocene catalyst, and the catalyst is prepared by supporting a first metallocene compound, supporting a cocatalyst by a separate-input method in which primarily adding a part at 100 °C to 150 °C and secondarily adding the rest at -5 °C to 40 °C, and then supporting a second metallocene compound, thereby improving a supporting rate of the cocatalyst in the supported catalyst and maintaining high catalytic activity. Therefore, the present disclosure can effectively prepare a polyolefin with improved processability which exhibits increased molecular weight distribution while having high morphology (reduced fine powder), high bulk density and improved settling efficiency.
摘要:
The present invention provides a hybrid supported catalyst capable of easily preparing an olefin polymer capable of having improved melt strength even while having appropriate molecular weight distribution, and thus having improved bubble stability and exhibiting excellent blown film processability, and a method for preparing an olefin polymer using the same.