摘要:
A positive electrode active material for a lithium secondary battery comprising a compound represented by Chemical Formula 1 is introduced.
[Chemical Formula 1] Li 1+m Ni 1-w-x-y-z Co w Mn x M1 y M2 z O 2-p X p
(In the Chemical Formula 1, M1 and M2 are different from each other, and any one element selected from the group consisting of Al, Mg, Zr, Sn, Ca, Ge, Ti, Cr, Fe, Zn, Y, Ba, La, Ce, Sm, Gd, Yb, Sr, Cu and Ga respectively, X is any one element selected from the group consisting of F, N, S, and P, w, x, y, z, p and m are respectively 0.125
摘要:
The present invention relates to an alloy-coated steel sheet and a manufacturing method thereof, and may provide an alloy-coated steel sheet and a manufacturing method thereof, the alloy-coasted steel sheet comprising: a steel sheet; and an Al-Mg-Si alloy layer disposed on the steel sheet, wherein the Al-Mg-Si alloy layer has a form in which Mg-Si alloy grains are included in an alloy layer consisting of an Al-Mg alloy phase.
摘要:
The present invention relates to a method for recovering nickel and cobalt from a nickel, iron, and cobalt-containing raw material. According to the present invention, high concentrations of valuable metals, such as nickel and cobalt, can be recovered from a raw material containing nickel, iron, and cobalt, and especially, the concentrations of nickel and cobalt are low and the concentration of iron is high, and thus when nickel is leached, a relatively large amount of iron is leached, whereas a small amount of nickel is leached. Therefore, the present invention can be more suitably applied in the smelting of nickel ore in which the separation of iron and nickel is difficult.
摘要:
A positive electrode active material for a lithium secondary battery according to an embodiment of the present invention includes a lithium transition metal composite oxide and doping metals doped in the lithium-transition metal composite oxide, wherein the doping metals includes at least two kinds and the average oxidation number of the doping metals is greater than 3.5.
摘要:
The present invention relates to a method for manufacturing lithium hydroxide and lithium carbonate, and a device therefor. The present invention provides a method for manufacturing lithium hydroxide, comprising: a step of dissolving lithium phosphate in an acid; a step of preparing a monovalent ion selective-type electrodialysis device disposed in the order of a cathode cell containing a cathode separator, a monovalent anion selective-type dialysis membrane for selectively permeating a monovalent anion, a monovalent cation selective-type dialysis membrane for selectively permeating a monovalent cation, and an anode cell containing an anode separator, injecting the lithium phosphate dissolved in the acid between the anode separator of the anode cell and the monovalent cation selective-type dialysis membrane, and between the cathode separator of the cathode cell and the monovalent anion selective-type dialysis membrane, respectively, and injecting water between the monovalent cation selective-type dialysis membrane and the monovalent anion selective-type dialysis membrane; a step of obtaining an aqueous lithium chloride solution, and at the same time, obtaining a phosphoric acid aqueous solution formed as a byproduct, by applying an electric current to the monovalent ion selective-type electrodialysis device; and a step of converting the obtained aqueous lithium chloride solution into an aqueous lithium hydroxide solution.
摘要:
The present invention relates to a cathode current collector for a solid oxide fuel cell and, more particularly, to a cathode current collector inserted between a cell and a metal separator constituting a unit of a fuel cell stack, and a solid oxide fuel cell including the same.