摘要:
Systems and methods for the configuration of network nodes without a secured connection in a telecommunications system are described herein. These network nodes can be wireless network nodes which are part of the network infrastructure, such as, wireless relays, wireless repeaters and self-backhauled eNodeBs.
摘要:
A method is implemented in an anchor eNodeB of a network, where the anchor eNodeB communicates with a self-backhauled eNodeB via a radio interface and where the network further includes another eNodeB. The method includes determining whether a user equipment (UE) is being handed off from the first self-backhauled eNodeB to the other eNodeB. The determining is based on: receiving (820) a message from the self-backhauled eNodeB via the radio interface instructing the anchor eNodeB to stop delivering packets that are destined for the UE. or sniffing (1 105. 1 1 10, 1 1 15) into one or more messages sent from the self-backhauled eNodeB to the other eNodeB to identify that the UE is being handed off from the self- backhauled eNodeB to the other eNodeB. The method further includes storing (1 120). based on the determination of whether the UE is being handed off, received packets intended for the UE: and forwarding (1 120) the stored packets to the other eNodeB via a transport network for delivery to the UE.
摘要:
The invention relates to a relay or repeater node (21) for use in a wireless communications system said node comprising a receive antenna (23) for receiving a signal through a wireless connection, an amplifier (30) for amplifying the signal and a transmit antenna (27) for forwarding the amplified signal, said node further comprising a mode switching unit (31) for switching between at least a first and a second mode of operation of the node in dependence of an amplification gain requirement. This enables optimization of the node for varying conditions in the network.
摘要:
The inventors have envisioned a multihop network scenario in which nodes are equipped with advanced multi-antenna arrangements, and recognized the advantage of exploring the presence of such advanced antenna arrangements in multihop network nodes for the specific purpose of determining link cost for routing in the network. Link cost is determined for a wireless link between a pair of nodes in the network based on multi-channel characteristics between the nodes, where at least one of the nodes is configured for operation with multiple antennas to provide for multiple channels. These multi-channel characteristics may for example be determined based on explicit channel matrix estimation and/or the number of transmit and receive antennas or other information on the antenna capabilities of the involved nodes. The determined link cost information may subsequently be used together with additional routing cost information for route determination, and packet forwarding.
摘要:
The present invention relates to quality-based scheduling of data in wireless networks (1). In this scheduling, quality information (30) representing the degree of decodability of previously transmitted but not correctly received and not successfully decoded data packets (10) is estimated in receiving communications nodes (200). This quality information (30) is reported back to the node (100) that transmitted the packet (10). The quality information (30) will be used by the transmitting node (100) when scheduling subsequent data transmissions. In this scheduling process, at least one of selection of: I) receiving node(s) (200), to which a second data packet (20) is to be forwarded; ii) a type of the data in the second packet (20); and/or iii) a data flow, to which the second packet (20) belongs, is performed based on the quality information (30).
摘要:
A basic idea is to employ multi-user detection (MUD) at the receiver side in a multi-hop network to concurrently decode multiple packets transmitted from multiple nodes (T1, T2), and prioritize among the correctly decoded packets to select one or more packets suitable for forwarding, and finally reply with a packet acknowledgement (ACK) to the corresponding transmitting node for each selected packet. In this way, the design choice of MUD is exploited in the forwarding procedure. It is furthermore beneficial to exploit also the diversity enabled by the existence of multiple relay nodes (R1, R2, R3). A transmitting node that transmits its data packet signal to multiple relay candidate nodes and then receives packet acknowledgements from at least two relay candidate nodes preferably performs a prioritization to select a suitable relay node. The transmitting node then transmits a forwarding order (FO) to the selected relay node, which takes on responsibility for forwarding the information to the next node.