摘要:
The presently disclosed seismic acquisition technique employs a receiver array and a processing methodology that are designed to attenuate the naturally occurring seismic background noise recorded along with the seismic data during the acquisition. The approach leverages the knowledge that naturally occurring seismic background noise moves with a slower phase velocity than the seismic signals used for imaging and inversion and, in some embodiments, may arrive from particular preferred directions. The disclosed technique comprises two steps: 1) determining from the naturally occurring seismic background noise in the preliminary seismic data a range of phase velocities and amplitudes that contain primarily noise and the degree to which that noise needs to be attenuated, and 2) designing an acquisition and processing method to attenuate that noise relative to the desired signal.
摘要:
Systems and methods for compensating for spatial and slowness or angle blurring of plane-wave reflection coefficients in imaging. A wave field may be determined at a reference depth proximate to a reflector for a shot record. A receiver-side blurring function may be determined at the reference depth. An aggregate blurring function may be constructed based at least partially on the source wave field and the receiver-side blurring function. A plane-wave reflection coefficients may be determined based at least partially on the aggregate blurring function.
摘要:
Determining geological layer location in a subterranean formation, including receiving seismic data representing an interaction of the geological layer with propagation of a seismic wave, identifying a source wavelet representing a portion of the seismic wave impinging on a boundary of the geological layer, providing a geological layer template of the geological layer including primary and secondary reflection interfaces associated with reflectivity based on material properties of the geological layer, generating a wavelet response template by applying the source wavelet to the geological layer template using a mathematical convolution operation to model seismic wave interference caused by the primary and secondary reflection interfaces, identifying an extremum of the seismic data, and determining, based on the extremum, the location of the geological layer in the subterranean formation using the wavelet response template.
摘要:
A method is provided for constraining a seismic inversion using real-time measurements. The method comprises: receiving a seismic signal/seismic data; obtaining logging-while-drilling (LWD) measurements made during a drilling procedure; using the LWD measurements to constrain an inversion of the seismic signal/data; and using the inverted seismic signal/data to: obtain an image of a subterranean section of the Earth, determine properties of the subterranean section of the Earth and/or update a model of the subterranean section of the Earth.
摘要:
Various embodiments include apparatus and methods to estimate formation mobility from Stoneley waveforms. An objective function can be generated that represents misfit between measured Stoneley pressure values and synthetic pressure values. A minimization process can be applied to the objective function to estimate formation mobility and intrinsic attenuation. Additional apparatus, systems, and methods are disclosed.
摘要:
A technique includes: providing seismic measurements of a transversely isotropic medium having a symmetry axis that is tilted relative to a vertical axis; modeling (504) a seismic wavefield in the media based at least in part on orientation of the symmetry axis and a nonzero shear velocity for the medium; and processing (508) the seismic measurements of the media in accordance with the modeled seismic wavefield to obtain information associated with the medium.
摘要:
Input survey data containing ghost data is processed, the ghost data containing data caused by a reflection from an interface, and the processing including performing full wave propagation. An output is produced in response to the processing.