摘要:
The present disclosure is related to a velocity model update with a full waveform inversion gradient. At least one method can include updating a velocity model of a subsurface, which can include suppressing high wavenumber components of the velocity model provided by reflected energy with a decomposed full waveform inversion gradient. Low wavenumber components can be preserved in the velocity model.
摘要:
Systems and methods of detecting marine seismic survey parameters are provided. A data processing system can obtain seismic data from seismic data acquisition units disposed on a seabed responsive to an acoustic signal propagated from an acoustic source through a water column. The data processing system can determine from the seismic data, a direct arrival time for the acoustic signal at each of the plurality of seismic data acquisition units, and can obtain an estimated depth value of each of the plurality of seismic data acquisition units and an estimated water column transit velocity of the acoustic signal. The data processing system can apply a depth model and a water column transit velocity model to the estimated depth value and to the estimated water column transit velocity determine an updated depth value and an updated water column transit velocity for each of the plurality of seismic data acquisition units.
摘要:
Certain implementations of a three-dimensional elastic frequency domain-iterative solver for full waveform inversion can be implemented as a method in which frequency domain numerical simulation of elastic waves is performed in three-dimensional (3D) media.
摘要:
The presently disclosed seismic acquisition technique employs a receiver array and a processing methodology that are designed to attenuate the naturally occurring seismic background noise recorded along with the seismic data during the acquisition. The approach leverages the knowledge that naturally occurring seismic background noise moves with a slower phase velocity than the seismic signals used for imaging and inversion and, in some embodiments, may arrive from particular preferred directions. The disclosed technique comprises two steps: 1) determining from the naturally occurring seismic background noise in the preliminary seismic data a range of phase velocities and amplitudes that contain primarily noise and the degree to which that noise needs to be attenuated, and 2) designing an acquisition and processing method to attenuate that noise relative to the desired signal.
摘要:
The presently disclosed seismic acquisition technique employs a receiver array and a processing methodology that are designed to attenuate the naturally occurring seismic background noise recorded along with the seismic data during the acquisition. The approach leverages the knowledge that naturally occurring seismic background noise moves with a slower phase velocity than the seismic signals used for imaging and inversion and, in some embodiments, may arrive from particular preferred directions. The disclosed technique comprises two steps: 1) determining from the naturally occurring seismic background noise in the preliminary seismic data a range of phase velocities and amplitudes that contain primarily noise and the degree to which that noise needs to be attenuated, and 2) designing an acquisition and processing method to attenuate that noise relative to the desired signal.
摘要:
A method can include receiving an inside stack and an outside stack; generating a multiple reflections model based at least in part on the inside stack and the outside stack; receiving multidimensional seismic data that includes representations of primary reflections and multiple reflections; and generating processed multidimensional seismic data by applying the multiple reflections model to the multidimensional seismic data. Various other apparatuses, systems, methods, etc., are also disclosed.