Abstract:
An assembly for monitoring load on a drum during an operation in a well with a well access line deployed from the drum. The assembly may include multiple line detection mechanisms for acquiring real-time information relative to dynamic characteristics of the lone over the course of the operation. The assembly also includes a processor for computing the real-time information in light of pre-stored information relative to physical characteristics of the line and the drum. As a result, real-time monitoring of a load on the drum may be achieved. Thus, the operation may be adjusted in real-time as necessary to avoid over- loading of the drum. Additionally, a drum load history may be recorded so as to better account for the true condition of the drum following successive operations.
Abstract:
An assembly for passive detection of features at known locations of a conduit. The assembly is a sensor assembly particularly well suited for detection of casing collars at known locations of cased wells, such as segmented hydrocarbon wells. Thus, the assembly is able to provide real time positioning information relative to any tool coupled thereto which is being advanced in the well pursuant to a well application. Given that the detection takes place in a passive manner via the combination of a magneto-responsive sensor and voltage responsive device, no separate dedicated power source or additional electronics are required.
Abstract:
A directional drilling system comprises a main drill bit 24 rotatable about a main bit axis 26, a pilot drill bit 34 rotatable about a pilot bit axis 36 substantially parallel to the main bit axis 26, and adjustment means 28 for adjusting the position of the pilot bit axis 36 relative to the main bit axis 26.
Abstract:
A method for stimulating a reservoir formation while running a casing string into the wellbore includes the steps of: connecting a stimulation assembly to a casing string, the stimulation assembly including a packer actuator in operational connection with a packer and a logging sensor; running the casing string into the wellbore and positioning the logging assembly proximate to a selected reservoir formation; logging the reservoir formation; positioning the stimulation assembly proximate to the reservoir formation; actuating the packer to substantially isolate the reservoir formation from the wellbore; performing the stimulation operation; releasing the packers from sealing engagement with the wellbore; positioning the logging assembly proximate to the reservoir formation; logging the reservoir formation; and disconnecting the stimulation assembly from the casing string.
Abstract:
A technique improves the formation of dependable seals along wellbores. A packer is constructed with a plurality of elastomeric layers and an internal mechanical layer that extend between mechanical extremities. One or more of a variety of features can be added to, or used in conjunction with, the packer to reduce wear and the potential for detrimental damage during use of the packer.
Abstract:
Systems, methods, and devices are provided to determine an accurate neutron-gamma density (NGD) measurement for a broad range of formations, including low-hydrogen-index or low-porosity formations and formations with heavy elements. For example, such an NGD measurement may be obtained by emitting neutrons into a formation such that some of the neutrons inelastically scatter off elements of the formation and generate inelastic gamma rays. The neutrons and inelastic gamma rays that return to the downhole tool may be detected. Some characteristics of certain formations are believed to affect the fast neutron transport of the formations. Thus, if a formation has one or more of such characteristics, a correction may be applied to the count rate of neutrons, the count rate of inelastic gamma rays, or the neutron transport correction function, upon which the neutron-gamma density (NGD) may be determined.
Abstract:
Methods and systems are provided for controlling operational parameters of a CO2 compression surface facility or pipeline in order to maintain a CO2 stream having impurities flowing in the pipeline in a liquid or supercritical phase. Sensors may be provided to sense whether the flow is single-phase or two-phase flow, and feedback provided to adjust the pressure and/or temperature at the pipeline inlet. The system is preferably optimized to limit power consumption and/or cost.
Abstract:
A gas separation and detection tool for performing in situ analysis of borehole fluid is described. The tool operates by introducing a reagent to a test sample and causing the resulting mixture to flow through a microfluidic channel where optical testing is performed. The optical testing detects a change in a characteristic of the reagent in response to expose to one or more particular substances in the test sample. The test sample may be borehole fluid, a mixture of borehole fluid and scrubbing fluid subsequently mixed with reagent, a mixture of reagent and gas separated from borehole fluid, or a mixture of scrubbing fluid and gas separated from borehole fluid which is subsequently mixed with reagent. A membrane may be employed to separate one or more target gasses from the borehole fluid.
Abstract:
Devices, methods and systems for determining one or more properties of at least one fluid sample. A tube configured to receive the at least one fluid sample wherein the tube is placed in a pressure housing. Further, an excitation source configured to generate vibration of the tube whereby a circulation of an electrical current along a portion of the tube is subjected to at least one magnetic field produced by at least one magnet. Further still, at least one vibration sensor that converts vibrations of the tube into a measurement signal. Finally, a processor that receives the measurement signal determines a resonant frequency from the measurement signal using a frequency measuring device to determine a property of the one or more properties of the at least one sample fluid.
Abstract:
A well system is provided and configured for local and/or global control of a well. The well system may comprise one or more controllable downhole devices. Each of the downhole devices may include a telemetry module, an energy module configured to at least power an actuator, a controller communicably coupled to the telemetry module and one or more sensors, and a controllable component coupled to the actuator. The well system may further include a surface controller comprising a desired state input device configured to accept a desired state and then provide the desired state to the controller via the telemetry module. The controller may compare the desired state to an actual state determined by a sensor and instruct the actuator to adjust the controllable component such that the actual state approaches the desired state. The downhole device may operate autonomously after the initial setting of the desired state.