摘要:
A reciprocating refrigerant compressor having a cylinder block provided with a plurality of cylinder bores in which a refrigerant gas sucked from a suction chamber is compressed to be subsequently discharged into a discharge chamber, a valve plate having suction ports through which the refrigerant gas is sucked into the respective cylinder bores and discharge ports through which the compressed refrigerant gas is discharged, a suction valve attached to one end face of the valve plate, a discharge valve attached to the other end face of the valve plate, a housing assembly attached to the cylinder block and having the suction and discharge chambers, and a sealing unit arranged in one of boundaries between the end face of the cylinder block and the suction valve, and between the suction valve and the valve plate to provide an annular sealing portions around each of the bore ends of the plurality of cylinder bores. The typical sealing unit is formed of a metallic base plate and elastic rubber membranes attached to the opposite faces of the metallic base plate.
摘要:
A variable displacement compressor includes a rotary valve which can rotate synchronously with a drive shaft. The rotary valve includes a center hole with one end closed and with the other end in constant communication with a suction chamber, and a communicating hole intermittently provide a fluid communication between the center hole and a gas extracting passage extending from a crank chamber along with the rotation of the rotary valve. The amount of refrigerant gas flowing back from the crank chamber to the suction chamber through the gas extracting passage is reduced by exactly the amount of the refrigerant gas which can flow through the gas extracting passage unless it is closed by the rotary valve. Therefore, even if the sectional area of the gas extracting passage is increased to an extent of being able to prevent sludge and other foreign matter from clogging it and ensure the processing accuracy and productivity, the increase of the amount of gas fed to the crank chamber at the time of transition from a large displacement operation to a low displacement operation, and the increase in the power loss of the compressor, can be suppressed.
摘要:
In a seal structure of a compressor according to the present invention, two O-rings 6 and 7 are disposed at a joint portion between a front housing 2 and a cylinder block 3 constituting a housing of a compressor 1. The inner O-ring 6 uses a material excellent in mechanical and chemical properties (nitrile rubber), and the outer O-ring 7 uses a material excellent in gas permeation resistance (butyl rubber). The inner O-ring 6 has a greater diameter and the outer O-ring 7 has a smaller diameter.
摘要:
The air conditioning system 100 may include a compressor 101, a heating circuit 152, and a capacity controller 181. The compressor 101 has a suction port 116, a discharge port 120, a driving unit 130 provided within a driving chamber 110, a first passage 201 and a second passage 105. The driving unit 130 may decrease compressor output discharge capacity when the pressure within the driving chamber 110 increases. The first passage 201 may connect the discharge port 120 to the driving chamber 110 and the second passage 105 may connect the driving chamber 110 to the suction port 116. The capacity controller 181 may open the first passage 201 when the refrigerant discharge pressure results predetermined pressure. By opening the first passage 201, the high-pressure refrigerant may be released from the discharge port 120 to the driving chamber 110 through the first passage 201. Thus, the pressure within the driving chamber 110 may increase, the compressor output discharge capacity can be reduced, the abnormally high discharge pressure of the compressor 101 can be alleviated by the reduction in the compressor output discharge capacity.
摘要:
An improved air conditioning system that cools or heats air very rapidly after being started. The system includes a main heater and a cooler which is also functions as an auxially heater. The cooler includes a variable displacement compressor (201) for compressing refrigerant gas. The compressor (201) has a crank chamber (15) and a discharge chamber (25). A crank mechanism is accommodated in the crank chamber (15). Compressed refrigerant gas is supplied to an external refrigerant circuit (202) via the discharge chamber (25). The discharge chamber is connected to the external refrigerant circuit by a passage (40). A throttle valve (41) is located in the passage (40). The throttle valve (41) closes the passage (40) immediately after the compressor is started, which quickly increases the pressure of the discharge chamber (25). As a result, the displacement of the compressor (201) is increased quickly, and rapid heating or cooling results.
摘要:
A compressor comprises a piston having a piston head and an engaging portion, said piston head being inserted into a cylinder bore, said engaging portion having a piston guide and a shoe seat in which a shoe is incorporated, wherein said shoe is engaged with a swash plate. The piston reciprocates in correspondence to rotation of the swash plate and the piston head compressing a refrigerant by the reciprocal movement. The piston guide protrudes outward from the surface of the piston head, extending over said shoe seat, being formed with dimensions exceeding the corresponding shoe seat and being caused to reciprocate along the inner wall surface of said housing in line with reciprocation of said piston.
摘要:
A control valve(25) for controlling displacement of a variable displacement compressor having a suction chamber(131), a discharge chamber(132), a control chamber(121), and a pressurizing passage(34). The control valve(25) adjusts the amount of refrigerant sent to the control chamber(121) from the discharge chamber(132) to control the compressor displacement. The control valve(25) includes a valve body(29) for adjusting the opened area of the pressurizing passage(34). A solenoid(26) urges the valve body(29) in a first direction with a force corresponding to the value of the current fed to the solenoid(26). A first and second pressure chamber(301,302) are partitioned by a diaphragm(31) in the valve. A target value of the pressure difference between the first and second pressure chambers(301,302) is determined by the urging force of the solenoid. For a given constant solenoid current, the compressor seeks the target value that corresponds to that current. The solenoid(26) requires only a relatively small current range, even if carbon dioxide is used as the refrigerant. Also, the valve(25) minimizes the compressor displacement when it receives no current.
摘要:
A control valve(25) for controlling displacement of a variable displacement compressor having a suction chamber(131), a discharge chamber(132), a control chamber(121), and a pressurizing passage(34). The control valve(25) adjusts the amount of refrigerant sent to the control chamber(121) from the discharge chamber(132) to control the compressor displacement. The control valve(25) includes a valve body(29) for adjusting the opened area of the pressurizing passage(34). A solenoid(26) urges the valve body(29) in a first direction with a force corresponding to the value of the current fed to the solenoid(26). A first and second pressure chamber(301,302) are partitioned by a diaphragm(31) in the valve. A target value of the pressure difference between the first and second pressure chambers(301,302) is determined by the urging force of the solenoid. For a given constant solenoid current, the compressor seeks the target value that corresponds to that current. The solenoid(26) requires only a relatively small current range, even if carbon dioxide is used as the refrigerant. Also, the valve(25) minimizes the compressor displacement when it receives no current.
摘要:
A variable displacement compressor includes a rotary valve (40) which can rotate synchronously with a drive shaft (15). The rotary valve (40) includes a center hole (42) with one end closed and with the other end in constant communication with a suction chamber (26), and a communicating hole (43) intermittently provide a fluid communication between the center hole (42) and a gas extracting passage (32) extending from a crank chamber (14) along with the rotation of the rotary valve (40). The amount of refrigerant gas flowing back from the crank chamber (14) to the suction chamber (26) through the gas extracting passage is reduced by exactly the amount of the refrigerant gas which can flow through the gas extracting passage (32) unless it is closed by the rotary valve. Therefore, even if the sectional area of the gas extracting passage (32) is increased to an extent of being able to prevent sludge and other foreign matter from clogging it and ensure the processing accuracy and productivity, the increase of the amount of gas fed to the crank chamber at the time of transition from a large displacement operation to a low displacement operation, and the increase in the power loss of the compressor, can be suppressed.
摘要:
A piston-operated compressor, of swash plate type and using CO 2 as a refrigerant, having a casing member in which a cylinder bore is formed to have a cylindrical peripheral wall surface and a piston reciprocating for compression in the cylinder bore and being formed of an aluminum alloy. The outer peripheral surface of the piston is coated with a film of a fluororesin material, and a piston ring of an iron metal is fitted in the neighborhood of the top portion of the piston to permit the CO 2 refrigerant to be compressed under high pressure. A first oil groove is formed in peripheral direction in parallel to and below the vicinity of the groove at the top portion of the piston in which the piston ring is fitted, and a second oil groove is formed below the first oil groove extending along the axial direction in parallel with the central axis of the piston.