PLASMONIC ELEMENT WITH WAVEGUIDE TRAPPING
    11.
    发明公开
    PLASMONIC ELEMENT WITH WAVEGUIDE TRAPPING 审中-公开
    含纤维的检测PLASMON元

    公开(公告)号:EP2534512A1

    公开(公告)日:2012-12-19

    申请号:EP10845908.2

    申请日:2010-02-11

    IPC分类号: G02B6/12

    CPC分类号: G02B6/1226 B82Y20/00

    摘要: Various plasmonic elements with waveguide trapping are provided. In one embodiment, a plasmonic element includes a waveguide layer including a first surface through which incident light enters the waveguide layer. The waveguide layer includes a medium and an array of plasmonic structures disposed within the medium. The medium has dielectric properties. The resonant frequency of the plasmonic structures is responsive to the dielectric properties of the medium. The plasmonic element is configured to trap incident light scattered by the plasmonic structures in a waveguide mode.

    Waveguide, apparatus including the waveguide, and method of manufacturing the waveguide
    12.
    发明公开
    Waveguide, apparatus including the waveguide, and method of manufacturing the waveguide 审中-公开
    Wellenleiter,Vorrichtung mit dem Wellenleiter,und Herstellungsverfahrenfürden Wellenleiter

    公开(公告)号:EP2528171A1

    公开(公告)日:2012-11-28

    申请号:EP12003433.5

    申请日:2012-05-04

    发明人: Koyama, Yasushi

    摘要: Provided are a waveguide with which strain and defect caused by a manufacturing process or the like or caused in a semiconductor in an initial stage or during operation are suppressed so that improvement and stabilization of characteristics are expected, and a method of manufacturing the waveguide. A waveguide (107) includes a first conductor layer (103) and a second conductor layer (104) that are composed of a negative dielectric constant medium having a negative real part of dielectric constant with respect to an electromagnetic wave in a waveguide mode, and a core layer (108) that is in contact with and placed between the first conductor layer and the second conductor layer, and includes a semiconductor portion (101). The core layer including the semiconductor portion has a particular depressed and projected structure extending in an in-plane direction.

    摘要翻译: 提供了抑制在初始阶段或在操作期间由半导体中的制造工艺等引起的或由半导体引起的应变和缺陷的波导,从而期望改善和稳定特性,以及制造波导的方法。 波导(107)包括第一导体层(103)和第二导体层(104),第一导体层(103)和第二导体层(104)由相对于波导模式的电磁波具有相对介电常数的负实部的负介电常数介质构成,以及 与第一导体层和第二导体层接触放置的芯层(108),并且包括半导体部分(101)。 包括半导体部分的芯层具有在面内方向上延伸的特定凹陷和突出结构。

    Waveguide-integrated plasmonic resonator for integrated SERS measurements
    14.
    发明公开
    Waveguide-integrated plasmonic resonator for integrated SERS measurements 审中-公开
    等离子体振荡器等离子体振荡器SERS-Messungen

    公开(公告)号:EP2523027A2

    公开(公告)日:2012-11-14

    申请号:EP12167861.9

    申请日:2012-05-14

    IPC分类号: G02B6/293 G02B6/122

    摘要: A resonator structure (100) for supporting radiation in a resonating cavity (170) is described. The resonator structure (100) comprises a metal ― insulator - metal waveguide, the metal ― insulator - metal waveguide comprising two metal layers (110, 130) and an insulating layer (120) sandwiched between the two metal layers (110, 130). The resonator structure (100) also comprises at least one nano-scale metallic reflector (160a, 160b), the at least one nano-scale metallic reflector (160a, 160b) being positioned at least partly in the insulating layer (120) and forming at least one mirror of the resonating cavity in the insulating layer (120).

    摘要翻译: 描述了用于支撑谐振腔(170)中的辐射的谐振器结构(100)。 谐振器结构(100)包括金属绝缘体金属波导,金属绝缘体金属波导包括夹在两个金属层(110,130)之间的两个金属层(110,130)和绝缘层(120) )。 谐振器结构(100)还包括至少一个纳米级金属反射器(160a,160b),至少一个纳米级金属反射器(160a,160b)至少部分地位于绝缘层(120)中并形成 绝缘层(120)中的谐振腔的至少一个反射镜。

    OPTICAL CIRCUITS AND CIRCUIT ELEMENTS AND METHODS OF FORMING SAME
    17.
    发明公开
    OPTICAL CIRCUITS AND CIRCUIT ELEMENTS AND METHODS OF FORMING SAME 审中-公开
    光路和电路元件及其制造方法

    公开(公告)号:EP1766449A4

    公开(公告)日:2009-05-13

    申请号:EP05857467

    申请日:2005-06-20

    申请人: UNIV PENNSYLVANIA

    IPC分类号: G02B6/12

    CPC分类号: B82Y20/00 G02B6/1226

    摘要: Circuits (10) and circuit elements adapted to function at optical or infrared frequencies are made from plasmonic (1) and/or nonplasmonic (2) particles disposed on a substrate, where the plasmonic and nonplasmonic particles have respective dimensions substantially smaller than a wavelength of an applied optical or infrared signal. Such particles are deposited on a substrate in a variety of shapes and sizes from a variety of plasmonic and/or nonplasmonic materials so as to form resistors, capacitors, inductors and circuits made from combinations of these elements.