METHOD AND APPARATUS FOR MODULUS REDUCTION
    12.
    发明公开
    METHOD AND APPARATUS FOR MODULUS REDUCTION 有权
    方法和装置以降低模块

    公开(公告)号:EP2350811A1

    公开(公告)日:2011-08-03

    申请号:EP09822945.3

    申请日:2009-10-30

    申请人: Certicom Corp.

    IPC分类号: G06F7/72 G09C5/00 H04L9/30

    摘要: A modulo reduction is performed on a value α represented as an ordered sequence of computer readable words. The lowest order words are eliminated by substituting an equivalent value represented by higher order words for each of the lower order words. The lowest order words are eliminated until the sequence has a word length corresponding to the modulus. Carries and borrows resulting from the substitution are propagated from lower order words to higher order words. Further reduction is performed to maintain the word length of the sequence to that of the modulus. The further reduction may be determined by examination of a carryover bit or may be performed a predetermined number of times without examination.

    Circuit électronique de calcul modulaire dans un corps fini
    13.
    发明公开
    Circuit électronique de calcul modulaire dans un corps fini 失效
    Elektronische Schaltung zur Modularberechnung in einem endlichenKörper

    公开(公告)号:EP0703528A1

    公开(公告)日:1996-03-27

    申请号:EP95460035.9

    申请日:1995-09-19

    IPC分类号: G06F7/72 G06F7/544

    摘要: L'invention concerne un circuit électronique de calcul (11) comportant un opérateur de multiplication (12) avec une entrée série, une entrée parallèle, et une sortie série, un premier registre (16) relié par sa sortie à l'entrée parallèle de l'opérateur, un deuxième registre (17) relié par sa sortie à l'entrée série de l'opérateur, un troisième registre (18), et un circuit de multiplexage pour relier sélectivement au moins une borne d'entrée de données et la sortie de l'opérateur aux entrées des premier, deuxième et troisième registres, et pour produire la sortie du circuit électronique de multiplication.
    Application aux opérations de multiplication, mise au carré, exponentiation et inversion modulaires sur GF(2 n ).

    摘要翻译: 该单元包括具有串联输入,并行输入和串联输出的乘法运算符(12)。 具有输入和输出的第一寄存器(16),并通过其输出连接到乘法运算器(12)的并行输入端。 第二寄存器(17)具有输入和输出,并通过其输出连接到乘法运算器(12)的串联输入。 具有输入和输出的第三寄存器(18)。 一种用于选择性地将数据输入端和乘法运算符的串联输出连接到第一,第二和第三寄存器的输入并产生用于电子倍增电路的输出的多路复用器电路。

    DIVISION SYNTHESIS
    15.
    发明公开
    DIVISION SYNTHESIS 审中-公开
    部门综合

    公开(公告)号:EP3316124A1

    公开(公告)日:2018-05-02

    申请号:EP17199009.6

    申请日:2017-10-27

    发明人: ROSE, Thomas

    IPC分类号: G06F7/535 G06F7/72

    摘要: A binary logic circuit for determining the ratio x / d in accordance with a rounding scheme, where x is a variable integer input of bit length w and d is a fixed positive integer of the form 2 n ± 1, the binary logic circuit being configured to form the ratio as a plurality of bit slices, the bit slices collectively representing the ratio, wherein the binary logic circuit is configured to generate each bit slice according to a first modulo operation for calculating mod (2 n ± 1) of a respective bit selection of the input x and in dependence on a check for a carry bit, wherein the binary logic circuit is configured to, responsive to the check, selectively combine a carry bit with the result of the first modulo operation.

    摘要翻译: 一种二进制逻辑电路,用于根据舍入方案确定比率x / d,其中x是位长度为w的可变整数输入,并且d是形式为2n±1的固定正整数,二进制逻辑电路被配置为 将所述比率形成为多个比特片,所述比特片共同地表示所述比率,其中,所述二进制逻辑电路被配置为根据第一模操作来生成每个比特片,以用于计算相应比特选择的mod(2n±1) 输入x和取决于对进位位的检查,其中二进制逻辑电路被配置为响应于该检查,选择性地组合进位位和第一模运算的结果。

    Modulo 3 reduction
    16.
    发明公开
    Modulo 3 reduction 审中-公开
    模-3-Reduzierung

    公开(公告)号:EP2196900A1

    公开(公告)日:2010-06-16

    申请号:EP09177691.4

    申请日:2009-12-02

    IPC分类号: G06F7/72

    CPC分类号: G06F7/727

    摘要: A modular-3 calculation method for binary number includes: determining whether two 1s consecutive from MSB exist in a binary number, when a target value for modular-3 calculation is inputted, and generating a first binary number by substituting the two ls with 0 whenever the consecutive two 1s exist; performing a modular-3 calculation on the first binary number; and determining the result of the modular-3 calculation.

    摘要翻译: 用于二进制数的模块3计算方法包括:当输入用于模块3计算的目标值时,确定从MSB连续的两个1是否存在二进制数,并且通过用0代替两个ls来产生第一个二进制数 连续两个1存在; 对第一个二进制数执行模块3计算; 并确定模块3计算的结果。

    HASH function implement with ROM and CSA
    17.
    发明公开
    HASH function implement with ROM and CSA 审中-公开
    HASH函数版本的ROM和CSA

    公开(公告)号:EP2006766A3

    公开(公告)日:2009-10-28

    申请号:EP07017163.2

    申请日:2007-09-01

    申请人: O2Micro, Inc.

    发明人: Wei, Franny Qiu, Di

    摘要: A hash unit for obtaining a hash value from hashing a set of parameters and a protocol parameter. The hash unit has a plurality of memory units for receiving the set of parameters and outputting a plurality of multiplication results, a first plurality of addition logics for receiving the plurality of multiplication results for outputting an addition result, and a second plurality of addition logics to generate the hash value wherein the hash value being equal to the addition result modulo a modulus constant.

    Verfahren zur Berechnung von modulo (2n+1)-Produkten und anschliessender modulo (2n)-Addition
    19.
    发明公开
    Verfahren zur Berechnung von modulo (2n+1)-Produkten und anschliessender modulo (2n)-Addition 审中-公开
    Verfahren zur Berechnung von modulo(2n + 1)-Produkten und anschliessender modulo(2n)-Addition

    公开(公告)号:EP1022653A1

    公开(公告)日:2000-07-26

    申请号:EP99810044.0

    申请日:1999-01-22

    申请人: Ascom Systec AG

    发明人: Zimmermann, Reto

    IPC分类号: G06F7/72

    CPC分类号: G06F7/727 G06F7/722

    摘要: Bei einem Verfahren zur Bestimmung des modulo-Produktes P = (X · Y)mod(2 n + 1) sowie der modulo-Summe Q = (P + W)mod(2 n ) für binäre Zahlen X, Y und W der Länge n in normaler Zahlendarstellung wird P mittels Addition der partiellen Produkte bestimmt:
    Die partiellen Produkte PP, werden dabei erfindungsgemäss derart generiert, dass K konstant wird. Ebenso wird bei der "carry-propagate" Schlussaddition von P ein Carrybit erzeugt, das auch zur Berechnung der modulo-Summe Q verwendet wird, wodurch eine schnellere Berechnung von Q möglich wird.
    Das erfindungsgemässe Verfahren eignet sich sowohl zur Verarbeitung binärer Zahlen in normaler Zahlendarstellung, als auch zur Verarbeitung von Zahlen, die in "Diminished-1"-Darstellung vorliegen. Weiter kann das erfindungsgemässe Verfahren derart abgeändert werden, dass es sowohl die Generierung der partiellen Produkte mittels "Booth Recoding"-Algorithmus, als auch die Anwendung eines Wallace-Trees bei der Addition der partiellen Produkte erlaubt.

    摘要翻译: 从P =(K + Sum(PPI + 1))mod(2n + 1)计算出模糊积P =(X星号Y)mod(2n + 1),其中X,Y和P是n位数, 其中K是常数,PPI是X和Y的第i个部分乘积,Sum是从I = 0到n-1。 通过P的进位传播最终加法,产生进位位,其也用于模数和Q的计算,以允许更快速地计算Q.独立权利要求包括在加密中使用该方法 过程和用于执行该方法的电路。

    METHOD AND APPARATUS FOR FAST ELLIPTICAL ENCRYPTION WITH DIRECT EMBEDDING
    20.
    发明公开
    METHOD AND APPARATUS FOR FAST ELLIPTICAL ENCRYPTION WITH DIRECT EMBEDDING 失效
    方法和设备,可用于直接嵌入算法RAPID椭圆加密

    公开(公告)号:EP0997016A1

    公开(公告)日:2000-05-03

    申请号:EP98935787.6

    申请日:1998-07-17

    IPC分类号: H04L9/30

    摘要: The present invention takes advantage of a quadratic-only ambiguity for x-coordinates in elliptic curve algebra as a means for encrypting plaintext directly onto elliptic curves. The encrypting of plaintext directly onto elliptic curves if refered to herein as 'direct embedding'. When performing direct embedding, actual plaintext is embedded as a '+' or '-' x-coordinate. The sender specifies using an extra bit whether + or - is used so that the receiver can decrypt appropriately. In operation their are two public initial x-coordinates such that two points P1+ and P¿1?- lie respectively on two curves E?+ and E-¿. A parcel of text x¿text? is selected that is no more than q bits in length. The curve (E?+ or E-¿) that contains x¿text? is determined. A random number r is chosen and used to generate a coordinate xq using the public key of a receiving party. An elliptic add operation is used with the coordinate xq and the parcel of text to generate a message coordinate xm. A clue xc is generated using the random number and the point P from the appropriate curve E+/-. The sign that holds for xtext is determined and called g. The message coordinate mm, the clue xc, and the sign g are sent as a triple to the receiving party. The receiving party uses the clue xc and its private key to generate coordinate xq. Using the sign g and coordinate xq, the text can be recovered.