Abstract:
The present invention relates to an antireflection film being capable of realizing high scratch resistance and antifouling property while simultaneously having low reflectivity and high light transmittance, and further being capable of enhancing screen sharpness of a display device.
Abstract:
The present invention relates to an antireflection film being capable of realizing high scratch resistance and antifouling property while simultaneously having low reflectivity and high light transmittance, and further being capable of enhancing screen sharpness of a display device, and a method for preparing the antireflection film.
Abstract:
A system and method for detection and measurement of circular birefringences in materials, such as optically active (chiral) liquids and materials that exhibit the Faraday effect. The method and apparatus permit the detection of optical activities via the difference in the directions of propagation the left- and the right- circularly polarized light (components). A beam of light is directed at an interface formed by the optically active medium and another medium such that a difference in the angles of refraction and/or reflection and/or diffraction between the left- and the right-circularly polarized components of the light beam can be detected. The difference in the propagation directions between the two circularly polarized light components is measured on a position sensitive detector and/or is detected as an intensity difference. The circular birefringence in isotropic liquids is a measure of their optical purity (enantiomeric excess) and hence the invention presents a method and apparatus to measure chirality. The invention is thus related to optical rotation (polarimetric) measurements, but has the advantage that it does not depend on path-length traversed through the sample.
Abstract:
An optical spectrum analyzer comprises a diffraction grating (DG), a polarization decomposing unit (PDM) for decomposing the input light beam into first and second light beams having mutually-perpendicular linear states of polarization, and two output ports (FP2/1, FP2/2) each for receiving from the grating, substantially exclusively, a respective one of the polarized light beams (LT, LR) after diffraction by the diffraction grating (DG). Each of the linearly-polarized light beams is directed onto the diffraction grating with its linear state of polarization at any prescribed angle to a corresponding plane of diffraction of the diffraction grating. The arrangement is such that the state of polarization of the light beams, at any particular wavelength within an operating band of the analyzer remains substantially unchanged with respect to time. The analyzer also may have a reflector (RAM) for reflecting the light beams leaving the diffraction grating after diffraction a first time so as to return them to the diffraction grating for diffraction a second time.
Abstract:
The present invention relates to an antireflection film being capable of realizing high scratch resistance and antifouling property while simultaneously having low reflectivity and high light transmittance, and further being capable of enhancing screen sharpness of a display device.
Abstract:
An imaging polarimeter sensor (20) includes an achromatic beamsplitting polarizer (30) that receives a polychromatic image beam (22) of a scene (24) and simultaneously produces a first polarized polychromatic image beam (32) and a second polarized polychromatic image beam (34). The second polarized polychromatic image beam (34) is of a different polarization than the first polarized polychromatic image beam (32) and is angularly separated from the first polarized polychromatic image beam (32). The achromatic beamsplitting polarizer (30) preferably includes a Wollaston prism (50) through which the polychromatic image beam (22) passes, and at least one grating (54, 56) through which the polychromatic image beam (22) passes either before or after it passes through the Wollaston prism (50). An imaging detector (38) receives the first polarized polychromatic image beam (32) and the second polarized polychromatic image beam (34) and produces an output image signal (40) responsive to the first polarized polychromatic image beam (32) and the second polarized polychromatic image beam (34).