摘要:
There is provided a method for imaging an object, the method comprising the steps of: accommodating a positioning of the object relative to an imaging system. A shape of the object is describable in terms of one or more shape parameters and the method includes creating scan data by determining a coordinate of the object at a set of points along an arc by the imaging system, wherein the coordinate of the object is a Z coordinate of an object layer. The method further includes determining an object shape parameter and an object position parameter based on the scan data by a system control module by extracting an amplitude and a phase of the scan data; and determining a center of the object layer based on the extracted amplitude and phase.
摘要:
A cataract surgical system, includes: a laser source, configured to generate a first set of laser pulses; a guiding optic, coupled to the laser source, configured to guide the first set of laser pulses to a cataract target region in an eye; a laser controller; and a Swept-Source Optical Coherence Tomographic (SS-OCT) imaging system, configured to generate an image that includes a portion of the first photo-disrupted region with an image resolution in the range of 0.5-10 million image points per image and a frame-rate in the range of 20-500 frames/sec. The laser controller is configured to generate an electronic representation of a target scan pattern, and to control the guiding optic to scan the first set of laser pulses according to a portion of the target scan pattern to create a first photo-disrupted region in the cataract target region; and to generate an electronic representation of a modified scan pattern in relation to the image generated by the SS-OCT imaging system, and to control the guiding optic to scan a second set of laser pulses according the modified scan pattern to create a second photo-disrupted region.
摘要:
Designs and techniques for constructing and operating femtosecond pulse lasers are provided. One example of a laser engine includes an oscillator that generates and outputs a beam of femtosecond seed pulses, a stretcher-compressor that stretches a duration of the seed pulses, and an amplifier that receives the stretched seed pulses, amplifies an amplitude of selected stretched seed pulses to create amplified stretched pulses, and outputs a laser beam of amplified stretched pulses back to the stretcher-compressor that compresses their duration and outputs a laser beam of femtosecond pulses. The amplifier includes a dispersion controller that compensates a dispersion of the amplified stretched pulses, making the repetition rate of the laser adjustable between procedures or according to the speed of scanning. The laser engine can be compact with a total optical path of less than 500 meters, and have a low number of optical elements, e.g. less than 50.