Abstract:
One example of a solar photovoltaic concentrator has a primary mirror with multiple free-form panels, each of which forms a Köhler integrator with a respective panel of a lenticular secondary lens. The Köhler integrators are folded by a common intermediate mirror. The resulting plurality of integrators all concentrate sunlight onto a common photovoltaic cell. Luminaires using a similar geometry are also described.
Abstract:
One example of a solar voltaic concentrator has a primary Fresnel lens with multiple panels, each of which forms a Köhler integrator with a respective panel of a lenticular secondary lens. The resulting plurality of integrators all concentrate sunlight onto a common photovoltaic cell. Luminaires using a similar geometry are also described.
Abstract:
Light sources comprise an emitter of photostimulative light, such as one or more blue LEDs, a reflector, which may be a diverging cone, disposed to reflect light from the LEDs towards an exit aperture, a tailored aspheric lens that further collimates the light from the reflector, a short-pass filter receiving and transmitting the collimated light, a dielectric concentrator receiving the light transmitted by the filter from the LEDs and concentrating it upon the exit aperture, a dielectric emission optic on the outside of the exit aperture to receive the concentrated light, and a layer of photosensitive phosphor deposited on the outside of the emission optic, the phosphor responsive to the LED light to emit light of a longer wavelength.
Abstract:
Some embodiments provide an illumination optical system. The optical system can include a first surface and a second surface. Each of the first and second surfaces can further comprises a multiplicity of corresponding Cartesian-oval lenticulations such that each lenticulation of the first surface focuses a source upon a corresponding lenticulation of the second surface and each lenticulation of the second surface focuses a target upon a corresponding lenticulation of the first surface.
Abstract:
In one embodiment of a solar concentrator, a tailored aspheric lens augments the solar-concentrator performance of a concave mirror, widening its acceptance angle for easier solar tracking, making it more cost-competitive for ultra-large arrays. The molded-glass secondary lens also includes a short rod for reducing the peak concentration on a photovoltaic cell that is optically bonded to the end of the rod. The Simultaneous Multiple Surface method produces lens shapes suitable for a variety of medium and high concentrations by mirrored dishes. Besides the rotationally symmetric parabolic mirror itself, other aspheric deviations therefrom are described, including a free-form rectangular mirror that has its focal region at its edge.
Abstract:
An optical manifold for efficiently combining a plurality of LED outputs into a single, substantially homogeneous output, in a small, cost-effective package. The optical manifolds can be used to combine multiple LEDs of the same color and provide a high intensity output aperture with very high uniformity and sharp borders, or they can be used to generate a multiwavelength output, such as red, green, and blue LEDs that are combined to generate white light. Embodiments are also disclosed that use a single or multiple LEDs and a remote phosphor and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. The optical manifolds are designed to alleviate substantial luminance inhomogeneities inherent to LEDs. The optical manifold utilizes principles of non-imaging optics to transform light and provide directed, substantially uniform light sources.
Abstract:
Some embodiments provide an illumination optical system. The optical system can include a first surface and a second surface. Each of the first and second surfaces can further comprises a multiplicity of corresponding Cartesian-oval lenticulations such that each lenticulation of the first surface focuses a source upon a corresponding lenticulation of the second surface and each lenticulation of the second surface focuses a target upon a corresponding lenticulation of the first surface.
Abstract:
The present embodiments provide methods and apparatuses for providing prescribed illumination. Some embodiments provide lenses (30, 40) that include a two-dimensional beam-forming lens-profile where the profile acts to deflect light rays (38, 46) from a light source (37, 61) into a relatively narrow output beam (47). A zone of higher refractive index than that of the area outside the profile is enclosed where the higher refractive-index zone admits the light rays, a transverse axis of revolution (34, 42) is further included and extends transversely across and outside of the lens-profile so that the transverse axis extends generally laterally with respect to a luminous centroid-direction of the output beam. The lens further includes a surface of revolution formed by circularly sweeping the lens-profile about the axis .of revolution forming a circumferential beam from the output beam emitted by said surface of revolution.