Abstract:
A method can include receiving formation parameter values associated with a bore of a formation; receiving a pressure stabilization value for fluid flow at a location in the bore of the formation; and, based at least in part on the formation parameter values and the pressure stabilization value, calculating a skin factor value for the location in the bore.
Abstract:
An acoustic transceiver assembly including a housing, an oscillator, and at least one membrane. The housing has at least one inner wall defining a cavity. The housing also has a first end and a second end defining an axis of the acoustic transceiver assembly. The oscillator is provided in the cavity. The oscillator is provided with a transducer element, and a backing mass acoustically coupled to the transducer element. The at least one membrane extends outward from the backing mass to support at least the backing mass within the cavity. The at least one membrane is flexible in an axial direction parallel to the axis of the acoustic transceiver assembly to permit the backing mass to oscillate in the axial direction, and rigid in a transverse direction to restrict lateral movement of the backing mass relative to the housing.
Abstract:
A method, apparatus, and program product estimate anisotropic properties of an anisotropic formation based at least in part on determinations of a deviation of a wellbore associated with the anisotropic formation and an availability of non-sonic measurement data associated with the anisotropic formation. The determinations are used in the selection of at least one computer-implemented model that in turn may be applied to determine one or more unknown elastic constants for an elastic stiffness matrix.
Abstract:
A method, apparatus, and program product automatically generate a surface network for an oilfield production system, e.g., as a new surface network or as an addition to an existing surface network. Candidate surface networks are generated from control vectors proposed by an optimization engine to optimize based upon an objective function that is based at least upon one or more geographical cost functions and one or more boundary conditions.
Abstract:
A method can include receiving data that characterizes anisotropy of a formation; receiving a model that models one or more planes of weakness in an anisotropic formation; and, based at least in part on the model and the data, outputting information germane to stability of a bore in an anisotropic formation.
Abstract:
Systems, methods, and computer-readable media for processing geomechanical data. The method may include receiving a three-dimensional model of a subterranean volume that includes a reservoir, and determining, using a processor, one or more hydraulic fracture performance attributes of the subterranean volume based in part on the model. The method may also include determining a completion quality for one or more locations in the subterranean volume based at least in part on the one or more hydraulic fracture performance attributes.