摘要:
Techniques for mitigating interference in a wireless communication system are described. In one design, a sector may determine multiple fast other sector interference (OSI) indications for multiple subzones, with each subzone corresponding to a different portion of the system bandwidth. At least one report may be generated for the multiple OSI indications, with each report including at least one OSI indication for at least one subzone. Each report may be encoded to obtain code bits, which may then be mapped to a sequence of modulation symbols. A sequence of modulation symbols of zero values may be generated for each report with all OSI indications in the report set to zero to indicate lack of high interference in the corresponding subzones. This allows a report to be transmitted with zero power in a likely scenario. A regular OSI indication may also be determined for the system bandwidth and transmitted.
摘要:
Systems and methodologies are described that facilitate cycling across antennas for channel quality information (CQI) computation and data transmission in a multiple-input multiple-output (MIMO) wireless communication environment. Pilots can be obtained by a wireless terminal. Further, virtual antennas that can be supported by a channel can be identified based upon an analysis of the pilots. Moreover, CQI computations can be effectuated for each of the supported virtual antennas; thereafter, the CQI data can be sent to a base station for data transmission scheduling. Additionally, the base station can schedule transmission based upon the CQI data and/or fairness considerations. When scheduled, data transmission can occur by cycling across the supported virtual antennas.
摘要:
Interference management is provided through use of a user-based interference control and/or a network-based interference control. For user-based interference control, the terminals are informed of the inter-sector interference observed by the neighbor sectors and can adjust their transmit powers accordingly so that the inter-sector interference is maintained within acceptable levels. For network-based interference control, each sector is informed of the inter-sector interference observed by the neighbor sectors and regulates data transmissions for its terminals such that the inter-sector interference is maintained within acceptable levels. Each system may utilize only user-based interference control, or only network-based interference control, or both.
摘要:
Beacon symbols are sent periodically from the base stations in an OFDM system. The entire power of the base station, or a large portion of it is concentrated in these symbols, thus they are very easily recognized by the mobile stations. The frequencies upon which these symbols are transmitted and the time at which they are transmitted communicates information such as the base station/sector identity and the preferred carrier of the given base station/sector to the mobile station. In order to avoid collision between the beacon symbols of different base stations and sectors, the beacon symbols from different base stations/sectors are transmitted at different symbols times and on different subcarriers.
摘要:
Systems and methodologies are described that provide techniques for generating and utilizing reverse link feedback for interference management in a wireless communication system. Channel quality and/or interference data can be obtained by a terminal from a serving sector and one or more neighboring sectors, from which an interference-based headroom value can be computed that contains interference caused by the terminal to an allowable range. The interference-based headroom value can then be provided with power amplifier (PA) headroom feedback to the serving sector. Based on the provided feedback from the terminal, the serving sector can assign resources for use by the terminal in communication with the serving sector. Further, the serving sector may choose to honor or disregard a received interference-based power value based on quality of service and/or other system parameters.
摘要:
Communication systems and methods that minimize repetition of data packets in the presence of supplemental resources are disclosed. Control channels not engaged in transmission of control messages are dynamically allocated to carry traffic data. The data packets that comprise the traffic data are processed in accordance with various schemes and the generated subpackets are transmitted so that an entire subpacket is transmitted on the traffic channel while a corresponding coded portion of the last subpacket is transmitted on the available supplemental channels. If the subpacket is decoded correctly an acknowledgement (ACK) message is sent otherwise a negative acknowledgement (NAK) is transmitted.
摘要:
Systems and methodologies are described that generate pilots for signal acquisition in a wireless communication system based on time domain sequences. The pilots may be generated by a base station and transmitted in a pilot field to one or more access terminals to aid in signal acquisition at each of the access terminals. One of the pilots may be common to all access points in the wireless communication system, thereby allowing an access terminal to obtain a timing estimate for the system while minimizing the effects of interference variations between base stations. Further, one or more generated pilots may be unique to each access point in order to allow each respective access point to be identified by its generated pilots.
摘要:
Techniques for efficiently sending data in a wireless communication system are described. Code division multiplexing (CDM) or orthogonal frequency division multiplexing (OFDM) may be selected for each traffic segment, which may correspond to specific time frequency resources. An output waveform comprised of traffic and overhead segments may be generated. Each traffic segment may carry CDM data at a chip rate if CDM is selected or OFDM data if OFDM is selected. OFDM symbols may be generated at a sample rate that may be an integer ratio of the chip rate and may have a duration that may be determined based on the traffic segment duration. The output waveform may carry CDM data and/or OFDM data on subcarriers corresponding to at least one carrier in a spectral allocation and may further carry OFDM data on remaining usable subcarriers in the spectral allocation.
摘要:
Systems and methods of scheduling sub-carriers in an OFDMA system in which a scheduler takes into account channel conditions experienced by the communication devices to optimize channel conditions. The scheduler can partition a set of sub-carriers spanning an operating bandwidth into a plurality of segments. The segments can include a plurality of global segments that each includes a distinct non-contiguous subset of the sub-carriers spanning substantially the entire operating bandwidth. One or more of the global segments can be further partitioned into a plurality of local segments that each has a bandwidth that is less than a channel coherence bandwidth. The scheduler determines channel characteristics experienced by each communication device via reporting or channel estimation, and allocates one or more segments to communication links for each device according to the channel characteristics.
摘要:
Methods and apparatuses are disclosed that utilize the discrete Fourier transform of time domain responses to generate beamforming weights for wireless communication. In addition, in some embodiments frequency subcarriers constituting less than all of the frequency subcarriers allocated for communication to a user may utilized for generating the beamforming weights.