摘要:
A system includes a focusing element configured to receive electromagnetic radiation coaxially and to focus the electromagnetic radiation to generate focused radiation. The system also includes a refracting element having an associated focal plane. The refracting element is configured to receive the focused radiation, and to refract the focused radiation to produce refracted radiation having an annular pattern at the focal plane. The system also includes a slit lamp having a receiving element to receive the refracted radiation.
摘要:
Methods and apparatuses for a micro-display based slit lamp illumination system are provided. A first optical element is configured to generate a micro-display image including an illuminated area. A second optical element is configured to receive the micro-display image, and focus the micro-display image upon an eye to be examined, wherein light is reflected from the eye as a result of the illuminated area.
摘要:
A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
摘要:
Systems and processes are described relating to laser-based ophthalmic intervention technologies and, more specifically, to techniques for delivering reproducible amounts of laser energy to create visible and sub-visible lesions on an eye. The subject technology may provide a user with the ability to adjust the amount of energy to be delivered to the eye tissue by selecting a single numerical value. In response, the system may adjust the power and/or duration of the laser treatment beam pulse according to an operating curve determined by the system.
摘要:
A system and method of performing therapy on target eye tissue. A light source produces a beam of light, and a scanning device deflects the light beam to produce an pattern of the light beam. An ophthalmic lens assembly includes a mirror for reflecting the light beam pattern onto the target eye tissue. The mirror is rotatable to angularly align the light beam pattern to the target tissue. Control electronics control the scanning device to apply the light beam pattern onto the reflective optical element at first and second angular orientations separated by a predetermined angle RA. The predetermined angle RA is set such that light beam patterns applied to the target tissue at the first and second angular orientations, which are also angularly aligned to the target tissue through rotation of the mirror, automatically are adjacently abutting to each other on the target tissue.
摘要:
A photomedical system and method for treating and/or diagnosing a patient's eye that includes a first light source for producing light, a scanning device for deflecting the light to produce a pattern of the light on the eye, a viewing element positioned to view the eye by a user or physician, and an alignment element aligned to the viewing element and the scanning device for optically indicating through the viewing element a location on the eye on which the pattern of the light will be located, but without projecting any alignment light onto the eye.
摘要:
A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.