Abstract:
A gas turbine engine has a nose cone with a nose cone upstream end and an inlet housing including a plurality of separate flow paths at a housing upstream end which is downstream of the nose cone upstream end. The inlet housing includes a mixing portion downstream of the housing upstream end which mixes airflow from the separate flow paths, such that the airflow is generally around 360 degrees of a rotational axis of the gas turbine engine. A rotor and a turbine drive a shaft to drive the rotor with the shaft including a bearing mounted at a location downstream of the nose cone upstream end.
Abstract:
Die Erfindung betrifft ein Verfahren zum Betreiben eines Verdichterstrangs (10) aufweisend zumindest einen Verdichter (12) und zumindest eine Kühlvorrichtung (14) zum Kühlen zumindest eines Strömungsmediums (16) auf eine vorgebbare Verdichtertemperatur (Tver) bei dem eine Verdichteraustrittstemperatur (Taus-ist) ermittelt wird; diese Verdichteraustrittstemperatur (Taus-ist) mit einer Soll-Verdichteraustrittstemperatur (Taus-soll) verglichen wird und bei einer Abweichung von der ermittelten Verdichteraustrittstemperatur (Taus-ist) von der Soll-Verdichteraustrittstemperatur (Taus-soll) eine Maßnahme (18) unter Verwendung der Kühlvorrichtung (14) zum Verändern der Verdichtertemperatur (Tver) des Strömungsmediums (16) am Verdichtereintritt (20) und/oder im Verdichter eingeleitet wird. Ferner betrifft die Erfindung eine Anordnung (32) zur Steuerung zumindest der Verdichtertemperatur (Tver) mittels zumindest der Kühlvorrichtung (14) und einen Verdichterstrang (10) mit einer solchen Anordnung (32) sowie ein Verfahren zum Betreiben eines Verdichterstrangs (10) aufweisend zumindest einen Verdichter (12) und zumindest eine Vorkühlung (14) zum Kühlen eines Strömungsmediums (16) bei dessen Eintritt in den Verdichter (12) und/oder sich befindend im Verdichter (12).
Abstract:
An improved gas turbine engine 100 is adapted to include an inlet flow control arrangement 116 disposed in an inlet passage 102 at least between a filter member 112 and a row of Variable Inlet Guide Vanes (VIGV), and adjacent the filter member 112, to enable pressure loss in the inlet passage 102 and supply reduced amount of inlet air to a compressor 106 to enable the reduction of power output of the gas turbine engine 100 at a low load condition.
Abstract:
A gas turbine engine and method of controlling the gas turbine engine that may be utilized in a power grid having a plurality of additional power generation sources. The gas turbine engine is configured with a compressor having an enlarged mass flow volume. The gas turbine engine may be operated at a base load for supplying power to the power grid at a part load and optimum efficiency for the engine, and may be ramped up to a higher output to supply a peak load output to the power grid.
Abstract:
Embodiments of a Gas Turbine Engine ("GTE (20)") are provided, as are embodiments of a plasma flow-controlled intake system (22) for deployment on a GTE. In one embodiment, the GTE includes a turbine section (30), a combustion section (28) upstream of the turbine section, a compressor section (26) upstream of the combustion section, and intake section (24) upstream of the compressor section. The intake section includes a plenum (38), a first inlet (34) fluidly coupled to the plenum, and a flow-obstructing structure (48) projecting into the plenum and having an outer surface impinged by the airflow directed into the plenum through the first inlet during operation of the GTE. A first array of plasma actuators (82, 128) is disposed on flow-obstructing structure and, when activated, suppresses vortex shedding of the air flowing over the outer surface of the flow-obstructing structure.
Abstract:
A power generating unit (10) comprises a gas turbine (11') with an air intake section (12), a compressor (13), at least one combustor (14, 16) and at least one turbine (15, 17), and further comprises a gas-cooled generator (18), being driven by said gas turbine (11) and having a generator cooling system (20) comprising at least one cooler, through which cooling water flows, and which removes heat from said generator. A more flexible operation of the unit can be achieved by connecting said generator cooling system (20) to an air intake heat exchanger (30) arranged within said air intake section (12) of said gas turbine (11) in order to transfer heat from said cooling water flowing through said generator cooling system (20), to the air flowing through said air intake section (12).