摘要:
An acquisition module includes a coherent correlator configured to receive a transmission having a pilot signal and correlate the received transmission with a local copy of the pilot signal to produce a first output, a delayed correlator configured to delay the first output and correlate the first output with the delayed first output to produce a second output, and a detector configured to detect the pilot signal in the transmission based on the second output.
摘要:
The disclosure is directed to a receiver. The receiver includes an interference canceller configured to filter digital samples produced from a modulated signal transmitted over a wireless channel, and a digital variable gain amplifier (DVGA) configured to amplify the filtered digital samples.
摘要:
This disclosure describes content-adaptive coding and modulation techniques. In particular, this disclosure describes techniques in which both a multimedia coding mode and a physical layer modulation scheme are adaptively selected based on content of a multimedia sequence. When the content changes such that either the coding or the modulation scheme can be improved, the coding and/or modulation may be changed to better optimize to the changed content. In one aspect, this disclosure provides a method of processing multimedia data, the method comprising selecting a multimedia coding mode for an encoder to encode the multimedia data and a physical layer modulation scheme for transmission of the multimedia data based on content of the multimedia data.
摘要:
Apparatus and methods for use in a wireless communication system are disclosed for recovery of timing tracking in a device, such as a wireless transceiver, after decoding errors occur due to incorrect timing tracking. In particular, the disclosed methods and apparatus recover timing tracking by monitoring a decoded signal in the transceiver for decoding errors occurring during a first frame, determining whether a number of decoding errors is greater than a predetermined amount, reacquiring a first pilot channel at a start of a subsequently received second frame when the number of decoding errors is determined to be greater than the predetermined amount, and resetting timing tracking of the transceiver based on the reacquired first pilot channel.
摘要:
Methods and apparatus for setting timing of sampling of one or more symbols. The disclosed methods account for at least three types of effective interference (EI) and are used to set the timing of a sampling window for sampling received symbols. The methods includes setting timing based on determining an energy density function accounting for both static and dynamic EI, determining the minimum of a total energy profile and sliding the sampling window to ensure that the minimum point is at a predetermined point, and determining and using a composite energy profile accounting for short term and long term fading effects. The disclosed apparatus include a transceiver employing one or more of the disclosed methods for setting timing when receiving the symbols.
摘要:
Systems and methods are provided for determining position location information in a wireless network. In one embodiment, timing offset information is communicated between multiple transmitters and one or more receivers. Such information enables accurate position or location determinations to be made that account for timing differences throughout the network. In another embodiment, transmitter phase adjustments are made that advance or delay transmissions from the transmitters to account for potential timing differences at receivers. In yet another embodiment, combinations of timing offset communications and/or transmitter phase adjustments can be employed in the wireless network to facilitate position location determinations.
摘要:
A method for positioninga collection window for a Fourier transform function is disclosed. A first orthogonal frequency division multiplexing (OFDM) symbol and a second OFDM symbol are received. The first OFDM symbol comprises a plurality of frequency division multiplexed (FDM) symbols. The first OFDM symbol is characterized by at least two of the following: a delay spread, a first arriving path (FAP), or a last arriving path (LAP). A channel location is estimated from a channel impulse response. A point relative to the channel location is selected. A beginning of the collection window is positionedfor the second OFDM symbol at the selected point. Alternatively, apoint is selectedat a first location relative to the channel location using a first algorithm if a delay spread is less than a predetermined length. The selected point is chosen at a second location relative to the channel location using a second algorithm if the delay spread is greater than the predetermined length.
摘要:
Techniques for performing frequency control in an OFDM system are described. In one aspect, frequency acquisition is performed based on a received pilot, and frequency tracking is performed based on received OFDM symbols. For frequency acquisition, an initial frequency error estimate may be derived based on the received pilot, and an automatic frequency control (AFC) loop may be initialized with the initial frequency error estimate. For frequency tracking, a frequency error estimate may be derived for each received OFDM symbol, and the AFC loop may be updated with the frequency error estimate. Frequency error in input samples is corrected by the AFC loop with the initial frequency error estimate as well as the frequency error estimate for each received OFDM symbol. In another aspect, a variable number of samples of a received OFDM symbol are selected, e.g., based on the received OFDM symbol timing, for use for frequency error estimation.
摘要:
Systems and methods are provided for tracking and compensating for analog gain mismatches or changes in a receiver. In an embodiment, a method is provided to track analog gain step magnitudes during operation of a device. The method includes employing an error signal between an automatic gain control (AGC) output and a reference level as input to a gain step magnitude tracking component. This also includes determining at least one compensation value from the AGC output to update a nominal gain step magnitude that tracks an actual gain step magnitude.