Abstract:
The disclosure is directed to a mobile communication device that includes automatic gain control (AGC) circuitry. Every n samples of the broadcast signals, an energy estimate of the AGC output signal is used to calculate and update a gain control value. Instead of using all n samples occurring subsequent to a previous gain control value update, only a subset of those n samples are used. In particular the first half of the n samples may be discarded in the energy estimate calculation while only the second half of the n samples may be used.
Abstract:
Time filtering channel estimates in a wireless communication system, such as an Orthogonal Frequency Division Multiplex (OFDM) system, can be used to improve the quality of channel estimates. The characteristics of an optimal channel estimate time filter can depend on the manner in which the channel estimate is determined as well as the time correlation of channel estimates. A receiver can implement an adaptive time filter for channel estimates in which the time filter response can vary based on channel estimate parameters. The channel estimate parameters can include the manner of determining channel estimates, a time correlation of channel estimates, and an estimated Doppler frequency. The time filter response can be varied continuously over a range of responses or can be varied discretely over a predetermined number of time filter responses.
Abstract:
Methods and apparatus for RF channel switching in a multi-frequency network. In an aspect, a method includes identifying a local area operations infrastructure (LOI) in the multi-frequency network, generating a channel description message (700) that associates at least one descrambling sequence identifier (704) with each RF channel associated with the LOI, respectively, and distributing the CDM over the LOI. In another aspect, a method includes receiving a CDM (1104) that associates at least one descrambling sequence identifier with each RF channel available in a LOI, detecting an RF channel switch event (1106) that identifies a selected RF channel, determining a selected descrambling sequence identifier from the CDM based on the selected RF channel (1110), switching to the selected RF channel wherein the selected descrambling sequence identifier identifies a selected descrambling sequence to descramble desired content carried on the selected RF channel (1112), and acquiring the desired content on the selected RF channel (1116).
Abstract:
Techniques for performing automatic gain control (AGC) at a wireless receiver are described. The total gain for the wireless receiver is achieved with discrete gain steps for analog circuitry and continuous gain for a digital variable gain amplifier (DVGA). An AGC loop is updated based on power measurements for an output signal from the DVGA. A first gain for the analog circuitry is selected from among multiple discrete gain values based on the AGC loop to maintain the average power of a baseband signal within a predetermined range at an analog-to-digital converter (ADC) input. A second gain for the DVGA is selected based on the AGC loop to maintain the average power of the output signal at a reference power level. The first gain is switched in a manner to avoid saturation of the ADC caused by the baseband signal and to provide switching hysteresis. The AGC may be performed in log domain and with multiple modes.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for antenna switching diversity comprising: identifying the start of an OFDM symbol period; switching from an original antenna to an alternative antenna; calculating a signal quality metric associated with the original antenna and the alternative antenna; and selecting either the original antenna or the alternative antenna for demodulation of a current OFDM symbol based on the calculated signal quality metric. In one aspect, the antenna switching diversity is based on either symbol rate switching or block rate switching, and a selection of one or the other is made.
Abstract:
Methods and apparatus for RF channel switching in a multi-frequency network. In an aspect, a method includes identifying a multiplex set that comprises one or more content flows, wherein the multiplex set is one of a vertical multiplex (VM) set and a unified multiplex (UM) set, generating an overhead message that associates one or more RF carrier frequencies with the one or more content flows, and transmitting the overhead message over the multi-frequency network. An apparatus includes input logic configured to receive an overhead message that associates one or more content flows with one or more RF carrier frequencies, and processing logic configured to detect a channel switch event that identifies a selected content flow, determine a selected RF carrier frequency associated with the selected content flow based on the overhead message, and switch to the selected RF carrier frequency to receive the selected content flow.
Abstract:
Methods and apparatus for RF channel selection in a multi-frequency network. A method includes identifying selected local operations infrastructures (LOIs) and their neighboring LOIs, generating a neighbor description message (NDM) that identifies the selected LOIs and their neighboring LOIs and associates a descrambling sequence identifier with each RF channel of the selected LOIs and their neighboring LOIs, and distributing the NDM over the selected LOIs. An apparatus includes a message decoder to receive an NDM that identifies RF channels of a first LOI and neighboring LOIs, and wherein each RF channel is associated with a descrambling sequence identifier, and processing logic to detect content acquisition failures, determine a list of RF channels and their associated LOIs that carry desired content, and select a selected RF channel that is associated with a selected LOI that carries the most additional content among the associated LOIs.
Abstract:
Methods and apparatus for RF handoff in a multi-frequency network. A method includes generating seamless and partially seamless handoff tables for multiplexes carried in a current LOI, wherein the seamless and partially seamless handoff tables comprise neighboring RF channels carrying one or more of the multiplexes in the current LOI, detecting a handoff event initiated by acquisition failures on a current RF, selecting a selected RF channel from the seamless and partially seamless handoff tables, and performing a handoff to the selected RF channel. An apparatus includes processing logic configured to generate the seamless and partially seamless handoff tables, detect a handoff event initiated by acquisition failures on a current RF, and select a selected RF channel from the seamless and partially seamless handoff tables. The apparatus also includes channel switch logic configured to perform a handoff to the selected RF channel.
Abstract:
The disclosure is directed to a receiver. The receiver includes an interference canceller configured to filter digital samples produced from a modulated signal transmitted over a wireless channel, and a digital variable gain amplifier (DVGA) configured to amplify the filtered digital samples.