摘要:
Computer-implemented method of simulating a collision between a first virtual tooth and a second virtual tooth comprising: receiving into the computer digital data defining, in three-dimensional space, the first virtual tooth and the second virtual tooth; receiving permissible movement input data directed to permissible movement of the first virtual tooth along or about a first axis; using the computer's processor, simulating, in three-dimensional space, bringing the first virtual tooth into contact with the second virtual tooth while constraining movement of the first virtual tooth based on the permissible movement input data, wherein the movement of the first virtual tooth is accompanied with an automatic movement that forces the first virtual tooth along or about an axis different from the first axis until the first virtual tooth contacts one or more neighboring teeth; and displaying, in a user interface of a display, data resulting from the simulation.
摘要:
A method includes receiving, with a computer system, a digital representation of a 3D tooth structure providing initial positions of one or more teeth of a patient, determining dimensions and shapes of a removable dental appliance, the dimensions and shapes being configured to reposition the one or more teeth from their initial positions to adjusted positions when the dental appliance is worn, and transmitting a representation of the dental appliance to a computer-aided manufacturing system. The dental appliance includes an appliance body configured to surround two or more teeth of the patient with a facial portion configured to register with facial sides of the surrounded teeth, and a lingual portion configured to register with lingual sides of the surrounded teeth. The appliance body is configured such that occlusal surfaces of the surrounded teeth of the patient are exposed when the removable dental appliance is worn by the patient.
摘要:
Techniques are described for moving an orthodontic object (e.g., an orthodontic appliance and/or its associated tooth) in response to input indicative of a desired movement of the object along a virtual archwire. The movement of objects along the archwire may be used to generate a three-dimensional (3D) representation of a patient's dental arch. The manner in which the object is to be moved along the virtual archwire may be determined automatically during creation of a treatment plan for a patient, or may be determined and input by an orthodontic practitioner as part of the creation of the treatment plan.
摘要:
Computer-based techniques are described that use orthodontic prescription templates to assist an orthodontic practitioner in creating a patient-specific orthodontic prescription. In particular, an orthodontic practitioner may retrieve a stored electronic orthodontic prescription template. The practitioner may then generate an orthodontic prescription that is specific to a patient's teeth by modifying one or more bracket attributes of the template within orthodontic modeling software. Subsequently, the practitioner may communicate the patient-specific orthodontic prescription to a manufacturing facility that constructs an indirect bonding tray for use in physically placing brackets on the patient's teeth.
摘要:
Techniques are described for using radio-frequency identification (RFID) tags to track patient-specific materials throughout the manufacturing of indirect bonding trays. A series of RFID tags may be used to track the patient-specific material starting with the taking of a patient's impression at a clinic within a dental impression tray, through the process of casting and forming the indirect bonding tray at a manufacturing facility, back into the clinic where the appliances are bonded to the patient's teeth, and eventually into storage where the left-over materials may be archived. A database may be used to capture unique identifiers for the RFID tags and other information throughout the process.