摘要:
Technology for a user equipment (UE) operable to perform measurement reporting for selected cells used in Licensed-Assisted Access (LAA) is disclosed. The UE can detect a plurality of cells. The UE can select a subset of cells from the plurality of cells for measurement reporting. The subset of cells can be: configured for use in LAA; associated with unlicensed carriers; and associated with one or more of: a common serving eNodeB or a common PLMN. The UE can perform measurement reporting for the subset of cells. Measurement reports for the subset of cells can be processed for transmission from the UE to the common serving eNodeB associated with the subset of cells.
摘要:
Future LTE systems will support massive carrier aggregation that necessitates transmission of a large number of acknowledgement signals (HARQ-ACKs) in response to downlink data transmitted over multiple component carriers. Described herein are methods and apparatus for efficiently transmitting HARQ-ACK and periodic channel state information (P-CSI) bits over the PUCCH (physical uplink control channel).
摘要:
Embodiments of a base station and method for early handover using uplink channel characteristics in a wireless network are generally described herein. In some embodiments, a method for handover determination is performed by an enhanced node B (eNB) operating as a serving cell base station. In these embodiments, a handover decision is based on a signal level of uplink transmissions of user equipment (UE) measured at a target cell base station in addition to signal levels of downlink signals of the target cell base station and downlink signals of a serving cell base station measured at the UE.
摘要:
Methods and apparatus are described for transmitting uplink control information (UCI) over an OFDMA-based uplink. In some embodiments, UCI symbols are mapped to resource elements (REs) in the time/frequency resource grid to maximize frequency diversity. In some embodiments, UCI is mapped in a manner that takes into account channel estimation performance by mapping UCI symbols to those REs that are closest (in terms of OFDM subcarriers/symbols) to REs that carry reference signals.
摘要:
User equipment and base stations can enable access to secondary radio access technology (S-RAT), a cross radio access technology (RAT) scheduling between a primary RAT (P-RAT) and a secondary RAT (S-RAT) and/or cross-scheduling in a same RAT with different optimizations and use/partition for different applications (e.g., a regular partition with a carrier resource (referred to as P-RAT) and an additional resource partition/region for device-to-device (D2D) or machine-type-communication (MTC) application (referred to as S-RAT)). Cross-RAT/partition-scheduling can include when S-RAT is scheduled by P-RAT or when P-RAT is scheduled by S-RAT.
摘要:
Described herein are processes related to discovering and establishing suitable multi-hop communication paths for (endpoint) user equipments (UEs). A network-initiated discovery and path selection processes may utilize periodically transmitted reference signals along with optional assistance information. A network node, such an eNodeB, and other relaying-capable nodes, such as relay UEs, may transmit periodic reference signals. Based on these transmitted reference signals and optional assistance information, the relay UEs and/or an endpoint node (e.g., the eNodeB or the endpoint UE) may make a selection decision for previous hop paths for communication. The endpoint UE or the eNodeB may make the selection decision for the end-to-end path in order to provide coverage extension for the end UE using multi-hop transmission paths.
摘要:
Techniques for joint transmission of a common transport block (TB) over a plurality of carriers via uplink and/or downlink are discussed. One example apparatus includes a processor, transmitter circuitry, and receiver circuitry. The processor can generate the common TB, prepare a physical layer encoding of the TB for each of the plurality of carriers, schedule each encoding to a set of physical resources in the associated carrier, and generate one or more control channel messages associated with the encodings. The transmitter circuitry can transmit the encodings via the scheduled sets of physical resources and transmit the one or more control channel messages on at least one of the carriers. The receiver circuitry can receive a common hybrid automatic repeat request feedback message associated with the physical layer encodings.
摘要:
A user equipment (UE) is configured to perform cell selection and camp on a first cell in a first frequency resource. The UE is configured to determine that proximity services are supported in a second frequency resource. The first and second wireless frequency resources are within licensed spectrums corresponding to one or more mobile communications networks. The UE is configured to start device-to-device communication on the second frequency resource and send, with the transceiver, a device-to-device message in the second frequency resource. The device-to-device message includes one of a device-to-device discovery message and a device-to-device communication message.
摘要:
Briefly, in accordance with one or more embodiments, an apparatus may be configured to receive a first scheduling request transmission for a first cell group, and a second scheduling request transmission for a second cell group, determine one of the first scheduling request and the second scheduling request to have a higher priority and another one of the first scheduling request and the second scheduling request to have a lower priority, and process the scheduling request having a higher priority without processing the scheduling request having a lower priority. An apparatus may be configured to combine a configuration of a first scheduling request for a first cell group and a second configuration of a second scheduling request for a secondary cell group in a system radio bearer, and transmit the SRB to a user equipment to process the first scheduling request and the second scheduling request.
摘要:
Disclosed in some examples are methods, systems, and machine readable mediums which reuse existing LTE functionality to rapidly signal UEs on the availability of a LTE-U cell. Using these techniques the on/off operation can be in the order of a few milliseconds (ms). Several techniques are disclosed herein, including use of component carrier (CC) specific Discontinuous Reception (DRX) signaling, PDCCH signaling, DL assignment based signaling, Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH) signaling, Beacon signaling, and the like.