摘要:
A printing system reduces a total amount of discharge of at least three different color inks that are mixable to express hues in a predetermined range without deteriorating the degree of granularity. The printing system reads recording ratios of the respective color inks corresponding to input tone data regarding the respective color inks from tables TC, TM, and TY and forms dots according to the recording ratios. Yellow ink Y has a higher dye density than a balancing density that ensures a color balance. This makes the recording ratio of the yellow ink Y lower than the recording ratios of cyan ink C and magenta ink M. The yellow ink Y has high lightness, so that sparely formed dots do not increase the degree of granularity even in an area of low tone data. The enhanced density of the yellow ink Y reduces the total amount of inks discharged from a head to satisfy a required printing density.
摘要:
The present invention appropriately determines the on/off state of dots having different hues in a printer using at least two inks of different hues, thereby enhancing the quality of printing. The system of the present invention applies the systematic dither method to determine whether or not dots are to be formed by ink of a predetermined hue, for example, magenta. In the case of formation of dots by magenta ink, the system drives a piezoelectric element PE disposed on a head corresponding to the magenta ink to form magenta dots and calculates a resulting value MRST. In the case of non-formation of dots by the magenta ink, on the other hand, the resulting value MRST is set equal to zero. The system then applies the technique of error diffusion to determine whether or not dots are to be formed by cyan ink, based on the tone data of the cyan ink. The structure of the present invention enables a difference between density data M(x,y) of the magenta ink and its resulting value MRST to affect density data of the cyan ink. This makes it difficult to form dots of cyan ink in the vicinity of dots of magenta ink.
摘要:
An image processing apparatus (30) is described in which the number of operations necessary for color correction processing is made smaller than the number of operations necessary for gradation number conversion processing in a later process without causing deterioration of image quality, so that color correction processing and gradation number conversion processing can be conducted at high speed. The number of gradations capable of being converted in the pre-gradation number conversion section (40) is larger than that in the post-gradation number conversion section (46). The pre-gradation number conversion section (40) conducts pre-gradation number conversion for converting the gradation number of color components of R, G, B of the original color image data into the gradation coordinate value of the most appropriate grid point in the color space. The color compensating section (42) reads out the gradation compensating data corresponding to the color image data subjected to the pregradation number conversion from the color compensating table memory (34), so that the gradation number of each color component of Rk, Gk, Bk is compensated and outputted. The post-gradation number conversion section (46) conducts post-gradation number conversion on the data obtained from the color compensating section so that a finally desired gradation number can be obtained.
摘要:
A printing device includes the following features. The first dot group in which dots are formed based on the first printing condition and the second dot group in which dots are formed based on a printing condition which is different from the first printing condition are formed together in a common region. In the common region, when the printing is performed in a plurality of conditions such that a difference of the dot pitch between a formation position of dots belonging to the first pixel group and a formation position of dots belonging to the second pixel group is 2/720 inch to 5/720 inch, the change in CIEL*a*b* of the printed image is within the preliminary determined range.
摘要翻译:打印装置包括以下特征。 在公共区域中一起形成基于第一打印条件形成点的第一点组和基于与第一打印条件不同的打印条件形成点的第二点组。 在公共区域中,当在多个条件下执行打印时,使得属于第一像素组的点的形成位置与属于第二像素组的点的形成位置之间的点间距的差为2 / 720英寸至5/720英寸,打印图像的CIEL * a * b *的变化在初步确定的范围内。
摘要:
The invention provides a printing method of printing on a printing medium. The method includes: performing a halftone process with a dither matrix on image data that represents a tone value of each pixel making up an original image to determine a state of dot formation at each of print pixels of a print image that is to be formed on the printing medium, and generating dot data that represents the determined state of dot formation; and generating a print image by mutually combining each of dot groups that are formed at each of a plurality of pixel groups in a common print region according to the dot data, the plurality of pixel groups being assumed to have different physical conditions with respect to the dot formation. The dither matrix stores each threshold value such that a number of dots to be allocated to each of the plurality of dot groups is determined according to a dot formation order of each of the plurality of dot groups in the common print region in the halftone process.
摘要:
This invention provides a printing apparatus that performs printing on a print medium. The printing apparatus includes: a dot data generator that performs a halftone process on image data, wherein the print image is formed by mutually combining print pixels belonging to each of a plurality of pixel position groups for which a physical difference is assumed at a formation of dots by the print image generator, in a common print area, and the halftone process is configured to determine the status of dot formation on each of the print pixels on an assumption of the physical difference.
摘要:
A specific number of adjacent pixels are combined into blocks. The tone values of the pixels in a target block are detected when the dot on-off state is determined, and the fact that the target block does or does not satisfy specific processing conditions is confirmed based on the relation between the magnitudes of the tone values thus detected. The dot on-off state is determined for the target block in block units if the target block satisfies the processing conditions. The conversion procedure can be rapidly performed by adopting this approach. The dot on-off state is determined for the pixels of the target block if the processing conditions are not satisfied. Image quality is thereby prevented from being adversely affected. Image quality can thus be preserved and image data rapidly converted to a specific expression format based on the dot on-off state by performing the conversion procedure in accordance with an appropriate method selected based on whether the processing conditions are satisfied.
摘要:
A plurality of nozzles in use are classified into M nozzle groups, each nozzle group including Neff nozzles, where Neff is an integer of not less than 2 and M is an integer of not less than 2. A plurality of dot positions on each raster line are also classified into M different types of dot positions. The Neff nozzles included in each nozzle group execute dot recording at one identical type of dot positions, whereas the different nozzle groups respective execute dot recording at different types of dot positions. A variety of methods are applicable for the nozzle classification. One available method classifies the plurality of nozzles into the M nozzle groups that are sequentially aligned in a sub-scanning direction to be separated from each other. In another available method, the plurality of nozzles are sequentially allocated to the M element groups one by one along the sub-scanning direction