摘要:
A method and apparatus of purifying feedwater to remove impurities including suspended solids therefrom, the method suitable for using in-line water pressure to permeate water through hollow fiber membranes and to backflush the membranes to remove solids collected or deposited thereon.
摘要:
A method for cleaning a filtration apparatus comprising a plurality of membranes immersed in at least one tank containing the effluent to be treated. According to the method, the effluent is at least partially removed from the tank to expose the membranes to the air, and at least one cleaning solution is fed through said membranes in the opposite direction to the effluent filtration flow by delivering said cleaning solution to the permeate side of said membranes.
摘要:
A wastewater feed containing an ultimate BOD/COD ratio > 0.6 is well-suited for especially acclimated thermophilic and/or caldo-active living micro-organisms ("hot cells") which thrive in an autothermal aerobic (ATA) reaction zone having an ATA bioreactor ("ATAB") operating at substantially ambient atmospheric pressure in combination with a MF or UF membrane filtration device from which a solids-free permeate may be withdrawn. This combination, of ATAB and membrane device is a "membrane bioreactor" (ATA MBR), which operates autothermally with a feed containing biodegradable organic materials having a BOD of at least 5,000 mg/L, preferably at least 10,000 mg/L (10 g/L) with a minor portion of "municipal" wastewater or domestic sewage. Operation of the ATAB, preferably in the thermophilic range from 45°C - 75°C, with constant HRT from 1 to 12 days, is contingent upon maintaining a stable population of live hot cells. Such cells enhance the biokinetics of degradation and allow operation of the ATAB at higher COD loading and a lower concentration of TSS, than would be possible at a lower temperature. A surprisingly high membrane productivity allows production of much less sludge to be disposed of outside the system, than would have to be disposed of with a conventional mesophilic reactor in normal operation with a HRT of less than 24 hr. A combination of an MP MBR with an ATA MBR is highly effective when the MPB produces high BOD concentration mixed liquor for destruction by the ATAB.
摘要:
A hollow fiber membrane ('fiber') comprises a tubular macroporous support (31) coated on its outer surface with a thin tubular asymmetric semipermeable film (33) of polymer. The film, by itself, is non-self-supporting. The support (31) itself is so flexible (flaccid) that it does not have a circular cross section and collapses with finger pressure. Such a tube of knitted or woven braid no greater than 2.5 mm o.d., having interstitial voids which are non-uniformly shaped by the 'ends' which are braided, is coated with a 'dope' of polymer, then coagulated in a bath to form the film. Yet, after coating, the braided membrane can withstand up to 1500 psig in hydraulic compression forces before a straight-line relationship between flux and pressure begins to flatten out. The voids are relatively much larger than pores in the film. These voids are small enough to inhibit substantial penetration of the dope which lies superficially supported on the upper portion of the braid. Viewed in an elevational cross-sectional view looking down the longitudinal axis of the dope-coated braid, the dope extends over less than 33 % of the outer portion of the braid's cross-sectional area. This thin coating of dope is made possible by a unique coating nozzle having sequential rounding and sizing orifices through which the braid is advanced by pulling it without unduly distorting the shapes of the voids in the braid. The shapes and sizes of the braid are thus retained except that the braid is distended into an essentially circular shape because of the tensile forces exerted by the coagulating dope. Hollow fiber membranes made as disclosed herein are used to make fluid-fluid separations, the braid and film being tailored to the purpose at hand.
摘要:
A tubular module is disclosed for use as a membrane device, comprising, a shell with fluid couplings removably affixed to each of its ends and at least one non-disassemblable cartridge operably held within the shell. The cartridge is constructed from plural wafers sequentially coaxially aligned, each wafer consisting essentially of a generally planar frame and an array of hollow fibers of selectively permeable material adhesively held by their ends in opposed portions of the border of the frame, without potting the ends. Several cartridges may be coaxially "ganged" to provide a "stack" with the required filtration area. The cartridges may be removably disposed in the shell, or secured therein so that the entire module may be discarded when its efficiency is unacceptably low. The wafers are adhesively secured to define a fluid-tight conduit with open ends through which a feedstream is flowed transversely over the fibers. The bores of the fibers are in open fluid communication with the permeate zone in the shell. A frame of a wafer may be provided with longitudinal, laterally spaced apart grooves in its upper surface and the fibers trained in the grooves. A cartridge may be made by precoating a first frame with adhesive, embedding the fibers in the adhesive, initially curing the adhesive and then placing a second frame over the partially cured adhesive ; and, repeating the steps. Alternatively, the second frame may be positioned over the embedded fibers on the first frame and the adhesive then cured. The arrays lie in a plane substantially orthogonal to the direction of flow of a feedstream to be treated, and fibers of one array are staggered relative to those in a successive array.
摘要:
A system is provided to treat wastewater from a metal-working facility, such as an automotive manufacturing plant in a bioreactor using live microorganisms. Such wastewater contains waste fluids which are a mixture of relatively easily biodegradable fats and oils, much less easily biodegradable synthetic fluids, oils and greases, and nonbiodegradable material including inorganic finely divided solids such as metal and silicon carbide particles. Such waste fluids require a hydraulic retention time (HRT) and a solids retention time (SRT) which is 10 times greater than for sewage. High quality water is separated from suspended solids which are removed from the reactor at an essentially constant rate and fed to an ultrafiltration membrane. Concentrate is recycled to the reactor, except for a bleed stream to remove solids periodically. The membranes acquire a long and effective life despite large variations in membrane flux, because of a permeate recycle which permits operation of the bioreactor at constant volume; permits flow of feed wastewater to the reactor at constant flow rate; and allows operation of the membrane modules at a relatively low pressure in a narrow range which does not damage the membranes. Such operation of the bioreactor allows one to use a reactor which is one-half the size (volume) than one which would be required with a system without a permeate recycle. Effective and long-lived operation of the membranes is obtained by filtering out (through a 140 mesh screen) all solids greater in diameter than about 106 mu m. Pilot plant tests conducted with wastewater from automobile manufacturing plants over a period of more than a year provide evidence of the surprising effectiveness of the system over a prolonged period.
摘要:
An asymmetric membrane comprising a tubular polymer film in combination with a tubular braid on which the film is supported, requires the braid be macroporous and flexible, yet sufficiently strong to withstand continuous flexing, stretching and abrasion during use for microfiltration (MF) or ultrafiltration (UF). The specifications for a braid of a long-lived membrane are provided. A membrane is formed by supporting a polymer film in which particles of calcined α-alumina are dispersed, on the defined tubular braid.
摘要:
Hollow fiber membranes are potted by injection molding a thermoplastic material into a cavity containing the fibers. The cavity is formed in part by the interaction of a mold and a layer of an adhesive pre-applied to a bundle of the membranes.
摘要:
A process and apparatus is described for filtering water with immersed membranes. In a batch process, permeate is withdrawn while the flow of feed is reduced or stopped at the end of a permeation cycle. The water level is reduced to a level where a portion of the membranes are exposed to air before draining the tank. In this or another process, the level of liquid is reduced to correspond with an area of the membrane fibers having an accumulation of solids. Aeration is provided for a period of time with the liquid at this level to dislodge at least a portion of the solids from the membranes. In these or other processes, the tank is partially drained between cycles to deconcentrate the tank, aeration is provided during backwashing and intermittently while permeating, and/or retentate is withdrawn from the tank during a portion of a permeation step.
摘要:
A membrane filtration device, for withdrawing permeate from a liquid substrate, includes a first solid body (41u); a second solid body (41b); and a plurality of hollow fiber membranes (42) potted in the solid bodies such that the peripheries of the membranes are bounded by an elongated rectangular shape and such that the membranes have open ends flush with or protruding from a permeate discharging face of one or both solid bodies. A permeate collection means (43u, 43b) is arranged to collect permeate in fluid communication with the permeate-discharging face of each solid body (41u, 41b) that has a permeate-discharging face. The membranes (42), the solid bodies (41u, 41b) and the permeate collection means (43u, 43b) together form a submersible assembly. The first solid body (41u) is upper and disposed in vertically spaced-apart relationship above the second solid body (41b). The opposed faces of the solid bodies (41u, 41b) are separated by a vertical distance and the membranes (42) have a length from 0.1% to less than 5% greater than the vertical distance between the opposed faces of the solid bodies (41u, 41b).