摘要:
The present invention relates to a process and a device for applying tensile forces, with no contact with solid walls, to glass sheets (6), in particular at high temperatures, wherein a gas or vapour is blown between the glass sheet (6) and a wall (16) closely approached, and parallel, to said glass sheet (6). Between the glass sheet (6) and said wall (16) a gas cushion is established, in that the sections through which the gas flows inside the air gap between the glass sheet and the wall increase on the average in the direction of streaming of the gas, so as to allow the gas speed to decrease, and a recovery in gas pressure to consequently take place. Several forms of practical embodiment of the device are disclosed.
摘要:
Method for thermally toughening glass sheets and glass sheets obtained by this method, in particular to be used as motor vehicle side or rear windows. A method of thermally toughening glass sheets for use as motor vehicle side or rear windows so that the glass sheets produced conform to regulations specifying fracture requirements. The glass sheets are advanced through a quenching station for gas quenching. The advance of the glass sheet relative to the flow of quenching gas is terminated for a predetermined time whereby localised gas flows are applied to the glass sheet. The method induces in the glass sheet a distribution of regions of more highly toughened glass interspersed with regions of lesser toughened glass.
摘要:
A glass bending line for quickly shaping a complex bent glass sheet is provided that includes moving a ring-type female mold, which has a heated glass sheet placed on it, and a full face heated male mold, toward one another. Upon making shaping contact between the glass sheet and the male mold, a vacuum is applied through holes extending through the male mold, for a time sufficient to form the glass sheet to a desired shape. When the glass sheet has been shaped, the vacuum is terminated and pressurized air is connected to the holes to release the bent glass sheet from the male mold. The bent glass sheet is then quickly transported to a quenching station or an annealing station on a continuous conveying device. Hence, the complex bent glass sheet is achieved without the use of a shuttle ring.
摘要:
The invention relates to a method for shaping a glass sheet comprising the steps (i) heating the glass sheet to a temperature suitable for shaping; (ii) depositing the glass sheet on a first bending tool for supporting the glass sheet thereon, the glass sheet being in a first position relative to the first bending tool; (iii) contacting an edge portion of the glass sheet such that the glass sheet is moved to a second position relative to the first bending tool; and (iv) shaping the glass sheet on the first bending tool. Positioning devices for moving a hot glass sheet during the method of the invention are described. A glass shaping line for carrying out the method is also described.
摘要:
A method of forming a shaped glass article includes placing a glass sheet on a mold such that a first glass area of the glass sheet corresponds to a first mold surface area of the mold and a second glass area of the glass sheet corresponds to a second mold surface area of the mold. The first glass area and the second glass area are heated such that the viscosity of the second glass area is 8 poise or more lower than the viscosity of the first glass area. A force is applied to the glass sheet to conform the glass sheet to the mold surface. During the heating of the second glass area, the first mold surface area is locally cooled to induce a thermal gradient on the mold.
摘要:
Methods and apparatus provide for modification of a work-piece at elevated temperatures. For example, a carrier may be provided and operable to support the work-piece. A support mechanism may be provided that is movable via gross translation between: (i) a retracted position such that a distal end thereof is away from the carrier, and (ii) an extended position such that the distal end thereof is at least proximate to the carrier. A work-piece modification system may be coupled to, and disposed proximate to, the distal end of the support mechanism, and operating to facilitate modifying the work-piece at an elevated temperature. The work-piece modification system is at least proximate to the work-piece when the support mechanism is in the extended position. A precision tuning mechanism may couple the work-piece modification system to the support mechanism, and may operate to provide fine adjustments to an orientation, and a distance, of the work-piece modification system relative to the work-piece. The carrier may operate to support the work-piece within a furnace having an ambient temperature at least above 300 °C, preferably at least above 500 °C, and more preferably at least above 600 °C. The fine adjustments of the precision tuning mechanism are preferably made via a plurality of controls outside the furnace at an ambient temperature substantially lower than that of the furnace.
摘要:
Apparatus, systems and methods for alignment of a glass member for high temperature processing are disclosed. The high temperature processing can, for example, pertain to a slumping process to mold glass into a predetermined shape (e.g., a three-dimensional shape). In one embodiment, a glass slumping system can have a mold and an alignment system that support a glass member to be slumped relative to the mold. The alignment system may have a plurality of alignment members being configured to move away from the glass member as the temperature increases during the slumping process to allow the glass member to bend around the mold without interference.
摘要:
In a preliminary forming step, positioning of a glass sheet is facilitated, and generation of a hinge mark by a flapping mechanism and generation of excessively bent portions, are prevented at the same time. A bending method for a glass sheet comprising: a preliminary forming step of placing a heated and softened glass sheet on a preliminary forming supporting mold which supports edge portions of the glass sheet, and pressing the glass sheet against a forming face of the preliminary forming supporting mold in a state that the glass sheet is placed on the preliminary forming supporting mold to form the glass sheet into a desired preliminary bent shape; and a main forming step of transferring the glass sheet formed into the preliminary bent shape onto a main forming supporting mold which supports edge portions of the glass sheet, and pressing the glass sheet against a forming face of a main forming mold in a state that the glass sheet is placed on the main forming supporting mold to form the glass sheet into a desired final bent shape; wherein the preliminary forming supporting mold comprises an outer mold and an inner mold provided inside the outer mold and having a flatter glass-plate-placing face than that of the outer mold, the main forming supporting mold comprises a lower mold having a forming face opposed to the main forming mold; the preliminary forming step includes a step of transferring the heated and softened glass sheet onto the inner mold, a step of transferring the glass sheet on the inner mold onto the outer mold, a step of pressing the glass sheet placed on the outer mold against the forming face of the preliminary forming mold, and a step of holding the glass sheet formed into the preliminary bent shape by the preliminary forming mold; and the main forming step includes a step of transferring the glass sheet formed into the preliminary bent shape onto the main forming supporting mold, and a step of pressing the glass sheet against the forming face of the main forming mold while an under surface of the glass sheet is supported by the forming face of the lower mold while the glass sheet is placed on the main forming supporting mold.