摘要:
An amplifying device comprises an electron gun (12) emitting an electron beam, a collector (16) spaced from the electron gun, the collector oriented to collect electrons of the electron beam emitted from the electron gun, and an interaction structure interposed between the electron gun and the collector. The interaction structure defines an electromagnetic path along which an applied electromagnetic signal interacts with the electron beam. The interaction structure further comprises a plurality of polepieces (32) and a plurality of magnets (42), the polepieces each having an aligned opening to collectively provide an electron beam tunnel having an axis extending between the electron gun and the collector to define an electron beam path for the electron beam. The polepieces provide a magnetic flux path to the electron beam tunnel from the magnets. More particularly, the interaction structure further includes plural cavities defined therein interconnected to provide a coupled cavity circuit. At least one of the plurality of polepieces separate adjacent ones of the plural cavities and have an iris for coupling the electromagnetic signal therethrough. At least one of the plurality of polepieces further has a void aligned perpendicularly to the beam tunnel axis.
摘要:
An amplifying device comprises an electron gun emitting an electron beam, a collector spaced from the electron gun, the collector oriented to collect electrons of the electron beam emitted from the electron gun, and an interaction structure interposed between the electron gun and the collector. The interaction structure defines an electromagnetic path along which an applied electromagnetic signal interacts with the electron beam. The interaction structure further comprises a plurality of polepieces and a plurality of magnets, the polepieces each having an aligned opening to collectively provide an electron beam tunnel having an axis extending between the electron gun and the collector to define an electron beam path for the electron beam. The polepieces provide a magnetic flux path to the electron beam tunnel from the magnets. More particularly, the interaction structure further includes plural cavities defined therein interconnected to provide a coupled cavity circuit. At least one of the plurality of polepieces separate adjacent ones of the plural cavities and have an iris for coupling the electromagnetic signal therethrough. At least one of the plurality of polepieces further has a void aligned perpendicularly to the beam tunnel axis.
摘要:
Magnetron including a cylindrical anode (11) having a resonant space formed therein and a cathode fitted therein, magnets (12a,12b) fitted to upper and lower sides of the anode (11), a yoke (1) fitted on outsides of the anode (11) and the magnets (12a,12b) to form a closed circuit, and cooling devices including a main cooling device to form a heat discharge path from the anode (11), and a supplementary cooling device (60) to form a heat discharge path from the magnet (12b) direct or indirectly, wherein the main cooling device is an anode heat conductor (50) having one end closely fitted to an outside surface of the anode (11), and the other end passed to the yoke (1) and exposed to an external air, and the supplementary cooling device includes a magnet heat conductor (60) closely fitted to an outside surface of the magnet (12b), the magnet heat conductor (60) having one side in contact with the outside case (41) of the magnetron, or a yoke heat conductor (70) closely fitted to an outside surface of a yoke plate, the yoke heat conductor (70) having one side in contact with the outside case of the magnetron (41).
摘要:
In an electrodeless lighting system having a cooling unit for cooling a radiator (720) therein, the electrodeless lighting system includes a microwave generating unit for generating microwave energy; a light emitting unit (300) connected to the microwave generating unit and emitting light by forming plasma by the microwave energy generated in the microwave generating unit; a housing (500) having a first receiving space (110) for receiving the microwave generating unit and sealed-combined with the light emitting unit (300); a heat exchanger (710) installed at the outer surface of the microwave generating unit to absorb heat generated in the microwave generating unit; a radiator (720) installed at the outer surface of the housing (500); and a heat transfer member (730) at which one end is connected to the heat exchanger (710) and the other end is connected to the radiator (720) by penetrating the housing (500) to transmit heat from the heat exchanger (710) to the radiator (720).
摘要:
Magnetron including a cylindrical anode (11) having a resonant space formed therein and a cathode fitted therein, magnets (12a,12b) fitted to upper and lower sides of the anode (11), a yoke (1) fitted on outsides of the anode (11) and the magnets (12a,12b) to form a closed circuit, and cooling devices including a main cooling device to form a heat discharge path from the anode (11), and a supplementary cooling device (60) to form a heat discharge path from the magnet (12b) direct or indirectly, wherein the main cooling device is an anode heat conductor (50) having one end closely fitted to an outside surface of the anode (11), and the other end passed to the yoke (1) and exposed to an external air, and the supplementary cooling device includes a magnet heat conductor (60) closely fitted to an outside surface of the magnet (12b), the magnet heat conductor (60) having one side in contact with the outside case (41) of the magnetron, or a yoke heat conductor (70) closely fitted to an outside surface of a yoke plate, the yoke heat conductor (70) having one side in contact with the outside case of the magnetron (41).
摘要:
L'invention concerne les tubes électroniques amplificateurs fonctionnant en hyperfréquence. Le tube électronique comporte un fourreau tubulaire allongé (10) à l'intérieur duquel se développe un faisceau d'électrons (12), un carter (28) assurant le maintien mécanique du fourreau (10), et des moyens pour assurer un transfert thermique du fourreau (10) vers le carter (28) afin de refroidir le fourreau (10). Les moyens pour assurer le transfert thermique comportent une résine (36) remplissant un volume libre situé entre le fourreau (10) et le carter (28) et des gros granules (38) d'un matériau à résistance thermique inférieur à celle de la résine (36), dans laquelle ils sont noyés.
摘要:
The present invention generally provides a vacuum processing system with a process chamber and a rotating member, such as a magnetron (308) in a PVD chamber (300), disposed in a cooling cavity (316) of the process chamber, where the rotating member includes a deflection member (340) for deflecting cooling fluid in the cooling cavity (316) toward interior portions of the rotating member. In one embodiment, a base plate (309) of the rotating member defines an upper surface of the rotating member and a magnet retainer (311) defines a lower surface of the rotating member. Magnets (310) are mounted between the base plate (309) and the magnet retainer (311). The deflection member (340) is mounted between the magnets (310) and can be coupled to the magnets on one or both ends. One end of the deflection member (340) is disposed toward the outer perimeter of the magnetron and the other end of the deflection member is disposed toward the interior portions of the rotating member. As the rotating member (308) rotates, the deflection member (340) deflects the cooling fluid from the side of the rotating member and forces the fluid into the interior portions of the rotating member. Heated fluid and/or air pockets in the interior portions are at least partially displaced by cooler fluid forced into the interior portions of the rotating member. A flow of cooling fluid provides cool fluid coming into the cooling cavity (316) while heated fluid exits the cooling cavity.
摘要:
The invention relates to a travelling wave tube configuration with a travelling wave tube (LR) and a linearization circuit arrangement (S). The aim of the invention is to integrate the linearization circuit arrangement (S) and the travelling wave tube (LR) in one unit and to keep the linearization circuit arrangement (S) at a temperature that is safe and lower than that of the wall (W) of the tube or a common wall in order to protect the linearization circuit arrangement while the tube housing is kept at an admissible high temperature. To this end, an active cooling element (K), preferably a Peltier element, is used.
摘要:
A vacuum tube for handling an r.f. signal having a predetermined frequency range comprises a linear electron beam emitting cathode (136), a heater (166) and a non-electron emissive current modulating grid (138). The grid (138) is positioned from the cathode (136) by the distance an emitted electron from the cathode (136) can travel in a quarter cycle of the r.f. signal. Outer (202) and inner (204) coaxial metal tubes forming a resonant line of a signal coupler (143) are respectively connected to the grid (138) and cathode (136) so electrons passing through the grid (138) are in bundles in an interaction region (20) between an accelerating anode (18) and the grid (138). Ferrite tiles (42) absorb r.f. fields in the interaction region (20). In one embodiment a signal coupling loop (12) is between metal tubes (202,204) at an end of the tubes spaced 3λ/4 from the grid (138) and cathode (136). In a second embodiment the coupler (143) includes a low voltage coaxial line (110) having an inner conductor (112) connected to a first metal face (125), spaced from a second opposed metal (134) face by a solid dielectric (140). The coaxial outer conductor (114) is connected to a third metal face (128), spaced from a fourth opposed metal face (142) by the solid dielectric (140). The third (128) and fourth (142) faces surround the first (125) and second (134) faces. The first (115) and third (128) faces are at DC ground potential while the second (134) and fourth (142) faces are at high negative DC voltages. The second (134) and fourth (142) faces are respectively at common ends of interior (204) and exterior (202) coaxial metal tubes forming a λ/2 coupler (143). Other ends of the tubes (202,204) are connected to the cathode (136) and grid (138). Bias leads (190,194) for the grid (138) and cathode (136) are connected to the exterior (202) and interior (204) tubes at positions λ/4 from the grid (138) and cathode (136), while a heater lead (196) goes through the interior tube (204) at a position λ/4 from the grid (138) and cathode (136).