摘要:
An enhanced paging mechanism is provided for UEs waking up from a very long paging cycle to improve paging robustness and flexibility. Enhanced paging includes absolute time paging (ATP) and paging with extended wakeup time. For absolute time paging, a UE receives ATP configuration and uses the actual wall time to calculate paging occasion if a condition is satisfied. In one embodiment, the wall time is acquired from at least one of an internal UE clock, a GPS time, information broadcasted from the network, or information from a higher layer signaling. For paging with extended wakeup time, a UE applies a long paging cycle followed by multiple normal paging cycles after waking up from the long paging cycle. In one embodiment, the long paging cycle is infinite and the UE enters normal paging cycle only upon TAU-triggered paging or uplink traffic.
摘要:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
摘要:
A UE initiates an MMTEL service in RRC Idle mode in a mobile communication network. The UE acquires access control information from a base station. The access control information comprises SSAC configuration information, ACB parameters information, and ACB bypass information. The ACB bypass information indicates whether ACB is applicable to MMTEL service type. The UE then performs SSAC check for the MMTEL service based on the access control information. The UE also performs ACB check for the MMTEL service if ACB is applicable to the MMTEL service. Otherwise, the UE bypasses the ACB check for the MMTEL service. The selective ACB mechanism can prioritize or deprioritize services based on operator's requirement.
摘要:
A method and apparatus for UE to report preference indication and other UE assistance information to the network is proposed. The UE transmits two-level speed information to the network. The two-level speed information is mapped from MSE mobility states based on a mapping rule.
摘要:
An enhanced paging mechanism is provided for UEs waking up from a very long paging cycle to improve paging robustness and flexibility. Enhanced paging includes absolute time paging (ATP) and paging with extended wakeup time. For absolute time paging, a UE receives ATP configuration and uses the actual wall time to calculate paging occasion if a condition is satisfied. In one embodiment, the wall time is acquired from at least one of an internal UE clock, a GPS time, information broadcasted from the network, or information from a higher layer signaling. For paging with extended wakeup time, a UE applies a long paging cycle followed by multiple normal paging cycles after waking up from the long paging cycle. In one embodiment, the long paging cycle is infinite and the UE enters normal paging cycle only upon TAU-triggered paging or uplink traffic.
摘要:
Various schemes are provided to improve SR resource utilization by adapting SR resource allocation to traffic pattern. In a first Scheme, SR resource allocation is configured more accurately. In one example, UE provides assistant information for eNB to determine or adjust SR configuration based on the received assistant information. In a second Scheme, multiple SR periods are configured and adapted to traffic pattern. In one example, eNB configures a set of SR resources with multiple SR periods, and UE applies different SR periods based on predefined events. Unused SR resources could be recycled by eNB for PUSCH data transmission. In a third Scheme, multiple SR allocations are configured and adapted to concerned applications. In one example, eNB configures multiple sets of SR resources adapted to predefined applications, and UE applies SR configurations based on corresponding applications. The additional SR configurations could be activated and/or deactivated.
摘要:
A power control method to mitigate in-device coexistence (IDC) interference is provided. A wireless communication device (UE) is equipped with a first LTE radio module and a second co-located WiFi/BT/GSNN radio module. Upon detecting coexistence or IDC interference, the UE applies power control method to mitigate the interference. In a first embodiment, the LTE radio module adjusts its power parameters locally without informing the serving eNB. In a second embodiment, the LTE radio module adjusts its power parameters and implicit informs the eNB through existing PHR reporting. In a third embodiment, the LTE radio module changes its power or power class and explicitly informs the eNB through UE capability or new RRC message or MAC CE. Power control can be used as a low cost and lightweight solution before applying other heavyweight solutions that either require more resource or control overhead, or have higher impact on throughput.
摘要:
Network-assisted solutions are provided to maintain MBMS service continuity. In one novel aspect, a base station broadcasts MBMS service continuity (SC) indication to a plurality of user equipments (UEs) via a system information block (SIB). The MBMS SC indication comprises MBMS service area IDs (SAIs) supported by the current cell as well as neighbor frequencies. If a UE is in RRC_IDLE state, then the UE makes cell reselection decision based on the MBMS SC indication to maintain MBMS service continuity. If the UE is in RRC_CONNECTED state, then the UE reports MBMS reception status to the base station based on the MBMS SC indication via a dedicated RRC message. As a result, the base station can makes certain decisions including handover for the UE to maintain MBMS service continuity.
摘要:
A method of managing multiple timing advance (TA) groups, maintaining multiple TA timers, and performing UL synchronization in a multi-carrier wireless system is provided. When a new component carrier (CC) is configured, it is assigned to a TA group having a TA group identifier. The TA groups are managed statically or dynamically. The TA group identifier is used to uniquely identify the TA group in the operations of uplink (UL) timing synchronization. Multiple TA timers are assigned to multiple TA groups. The TA timers may have different values for different TA group. Different embodiments of UL timing adjustments for multiple TA groups are provided.