摘要:
A terminal with transmitter and receiver operates in a multi-carrier communication system and receives at least two downlink carriers. One or more timing advance commands are received, each associated with a group of one or more uplink carriers, each group being associated with one or more of the received downlink carriers. For each downlink carrier associated with one of the groups of uplink carriers, one is selected as a reference downlink carrier; the reference downlink carrier timing is ascertained; and a transmission time period is ascertained based on the timing of the downlink reference carrier and an offset specified by the timing advance command associated with the group of uplink carriers. The transmission time period comprises a start time and a stop time. Transmission is initiated at an earliest transmission start time of the ascertained transmission time periods and is ceased at a latest ascertained stop time.
摘要:
A method of scheduling wireless data transmissions between a mobile terminal and a base station using multiple system carrier signals is disclosed. The method comprises the steps of receiving (101) the mobile terminal information from the base station indicating available system carriers; detecting (102) at least one dynamic parameter indicative of the mobile terminal's current capability to handle non-contiguous system carriers; determining (103) from the dynamic parameter whether a situation has occurred where the mobile terminal's capability to handle non-contiguous system carriers has been reduced; modifying (104), in such case, feedback information to be transmitted to the base station; and transmitting (105) the modified feedback information to the base station. By modifying the feedback information in this way the mobile terminal reduces the likelihood that the base station allocates non-contiguous system carriers to the mobile terminal in situations where it has a reduced capability of handling such system carriers.
摘要:
A node (28) of a radio access network, RAN, configured for operation over a radio interface (32) with a wireless terminal (30), and a method for operating such a node. The node is characterized by a computer-implemented node radio resource control, RRC, unit (52) and a transceiver (48). The computer-implemented node radio resource control, RRC, unit (52) is configured to prepare a measurement request message for transmission to the wireless terminal (30). The measurement request message being configured both to direct the wireless terminal (30) to perform measurements relative to position determination signals transmitted from plural cells of the radio access network (20) and to provide a parameter which specifies or influences timing of a mode change, the mode change being between a discontinuous mode and a modified mode. The discontinuous mode being configured to comprise at least one of non-reception periods between reception periods and non-transmission periods between transmission periods, and wherein relative to the discontinuous mode the modified mode is configured to shortened or eliminated at least one of following: i) the non-reception periods, and ii) the non-transmission periods. The transceiver (48) is configured to transmit the measurement request message to the wireless terminal (30) over the radio interface (32).
摘要:
Allocation of cell IDs in a cellular communication system includes determining a candidate allocation pattern of primary and secondary synchronization signal sequences for a candidate set of two or more cells. A performance metric is applied to the candidate allocation pattern to ascertain a performance indicator for the candidate allocation pattern, wherein the performance indicator indicates a quality of positioning performance for the candidate set of two or more cells. Cell-specific positioning performance for each cell in the candidate set of cells can be considered to derive the performance indicator of the candidate allocation pattern. If the performance indicator indicates acceptable positioning performance, primary and secondary synchronization signal sequences are allocated to respective ones of base stations corresponding to the two or more cells in accordance with the candidate allocation pattern. Otherwise, the process is repeated for a different candidate allocation pattern.
摘要:
Methods and apparatus for generating and determining multi-component carrier cells, without the use of neighbor-cell lists, are described. Methods for generating and informing a communication system terminal about other component carriers belonging to a certain cell identity (ID), and methods and apparatus for a mobile terminal utilizing extended synchronization information for doing multi-component carrier cell search are described. Also, methods for multi-component carrier measurements and methods of reporting such measurements to a network are described.
摘要:
A receiver receives and front-end processes a plurality of component carrier signals, each carrier spaced apart in frequency. The digitized, baseband component carrier signals are inspected to determine estimates of timing offsets between the carriers. A control unit selects a first component carrier signal having data scheduled to the receiver. If data is scheduled to the receiver on other component carrier signals, the control unit generates timing and frequency offset adjustment control signals to time-and frequency-align each other component carrier signal having relevant data, to the first component carrier signal. All the relevant component carrier signals are then combined, and a single OFDM symbol, spanning all the relevant component carriers, is presented to an FFT for symbol detection.
摘要:
Mechanisms for efficient transmission of large amount of download data from a base station (210) to a user equipment (220) in a multi-carrier that minimizes power consumption on the user equipment are described. When multiple component carriers are to be used to transmit the download data, the base station (210) informs the user equipment (220). The base station (210) transmits on the anchor carriers without wait after informing the user equipment (220) and transmits on the non-anchor carriers after waiting a predetermined delay. The predetermined delay provides time to allow the user equipment (220) to activate the receiving resources and be ready to receive the download data over the non-anchor carriers. In this manner, the user equipment (220) can be in a power conservation mode and activate the receiver resources only when needed.